name
stringlengths
3
112
file
stringlengths
21
116
statement
stringlengths
17
8.64k
state
stringlengths
7
205k
tactic
stringlengths
3
4.55k
result
stringlengths
7
205k
id
stringlengths
16
16
Matroid.uniqueBaseOn_dual_eq
Mathlib/Data/Matroid/Constructions.lean
theorem uniqueBaseOn_dual_eq (I E : Set α) : (uniqueBaseOn I E)✶ = uniqueBaseOn (E \ I) E
α : Type u_1 I E B : Set α hB : B ⊆ E h : B = E \ I ⊢ E \ B = I ∩ E
rw [h, inter_comm I]
α : Type u_1 I E B : Set α hB : B ⊆ E h : B = E \ I ⊢ E \ (E \ I) = E ∩ I
60744eced319574b
Finsupp.linearCombinationOn_range
Mathlib/LinearAlgebra/Finsupp/LinearCombination.lean
theorem linearCombinationOn_range (s : Set α) : LinearMap.range (linearCombinationOn α M R v s) = ⊤
α : Type u_1 M : Type u_2 R : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M v : α → M s : Set α ⊢ span R (v '' s) ≤ map (linearCombination R v) (supported R R s)
exact (span_image_eq_map_linearCombination _ _).le
no goals
5d96391416327877
CoxeterSystem.prod_alternatingWord_eq_prod_alternatingWord_sub
Mathlib/GroupTheory/Coxeter/Basic.lean
theorem prod_alternatingWord_eq_prod_alternatingWord_sub (i i' : B) (m : ℕ) (hm : m ≤ M i i' * 2) : π (alternatingWord i i' m) = π (alternatingWord i' i (M i i' * 2 - m))
B : Type u_1 W : Type u_3 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i i' : B m : ℕ hm : m ≤ M.M i i' * 2 ⊢ (if Even ↑m then 1 else cs.simple i') * (cs.simple i * cs.simple i') ^ (↑m / ↑2) = (if Even (↑(M.M i i' * 2) - ↑m) then 1 else cs.simple i) * (cs.simple i' * cs.simple i) ^ ((↑(M.M i i' * 2) - ↑m) / ↑2)
generalize (m : ℤ) = m'
B : Type u_1 W : Type u_3 inst✝ : Group W M : CoxeterMatrix B cs : CoxeterSystem M W i i' : B m : ℕ hm : m ≤ M.M i i' * 2 m' : ℤ ⊢ (if Even m' then 1 else cs.simple i') * (cs.simple i * cs.simple i') ^ (m' / ↑2) = (if Even (↑(M.M i i' * 2) - m') then 1 else cs.simple i) * (cs.simple i' * cs.simple i) ^ ((↑(M.M i i' * 2) - m') / ↑2)
8b276f2d43ad82bd
IsCompactlyGenerated.BooleanGenerators.sSup_inter
Mathlib/Order/BooleanGenerators.lean
lemma sSup_inter (hS : BooleanGenerators S) {T₁ T₂ : Set α} (hT₁ : T₁ ⊆ S) (hT₂ : T₂ ⊆ S) : sSup (T₁ ∩ T₂) = (sSup T₁) ⊓ (sSup T₂)
case a.a α : Type u_1 inst✝¹ : CompleteLattice α S : Set α inst✝ : IsCompactlyGenerated α hS : BooleanGenerators S T₁ T₂ : Set α hT₁ : T₁ ⊆ S hT₂ : T₂ ⊆ S ⊢ sSup (T₁ ∩ T₂) ≤ sSup T₁
apply sSup_le_sSup Set.inter_subset_left
no goals
7804e1cb5854118b
CategoryTheory.ShortComplex.exact_iff_mono
Mathlib/Algebra/Homology/ShortComplex/Exact.lean
lemma exact_iff_mono [HasZeroObject C] (hf : S.f = 0) : S.Exact ↔ Mono S.g
case mp C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C S : ShortComplex C inst✝ : HasZeroObject C hf : S.f = 0 this✝ : S.HasHomology h : IsZero S.homology this : IsIso S.pOpcycles ⊢ Mono S.g
have := mono_of_isZero_kernel' _ S.homologyIsKernel h
case mp C : Type u_1 inst✝² : Category.{u_3, u_1} C inst✝¹ : Preadditive C S : ShortComplex C inst✝ : HasZeroObject C hf : S.f = 0 this✝¹ : S.HasHomology h : IsZero S.homology this✝ : IsIso S.pOpcycles this : Mono S.fromOpcycles ⊢ Mono S.g
f4e5eedef442a362
Real.sign_eq_zero_iff
Mathlib/Data/Real/Sign.lean
theorem sign_eq_zero_iff {r : ℝ} : sign r = 0 ↔ r = 0
case inl r : ℝ h : r.sign = 0 hn : r < 0 ⊢ r = 0
rw [sign_of_neg hn, neg_eq_zero] at h
case inl r : ℝ h : 1 = 0 hn : r < 0 ⊢ r = 0
2e6f33eeda35157a
WeierstrassCurve.exists_variableChange_of_char_two
Mathlib/AlgebraicGeometry/EllipticCurve/IsomOfJ.lean
private lemma exists_variableChange_of_char_two (heq : E.j = E'.j) : ∃ C : VariableChange F, E.variableChange C = E'
case intro.of_j_ne_zero.intro.of_j_ne_zero F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E E' : WeierstrassCurve F inst✝⁴ : E.IsElliptic inst✝³ : E'.IsElliptic inst✝² : CharP F 2 heq : E.j = E'.j C : VariableChange F inst✝¹ : (E.variableChange C).IsCharTwoJNeZeroNF C' : VariableChange F inst✝ : (E'.variableChange C').IsCharTwoJNeZeroNF ⊢ ∃ C, E.variableChange C = E'
simp_rw [← variableChange_j E C, ← variableChange_j E' C', j_of_isCharTwoJNeZeroNF_of_char_two, one_div, inv_inj] at heq
case intro.of_j_ne_zero.intro.of_j_ne_zero F : Type u_1 inst✝⁶ : Field F inst✝⁵ : IsSepClosed F E E' : WeierstrassCurve F inst✝⁴ : E.IsElliptic inst✝³ : E'.IsElliptic inst✝² : CharP F 2 C : VariableChange F inst✝¹ : (E.variableChange C).IsCharTwoJNeZeroNF C' : VariableChange F inst✝ : (E'.variableChange C').IsCharTwoJNeZeroNF heq : (E.variableChange C).a₆ = (E'.variableChange C').a₆ ⊢ ∃ C, E.variableChange C = E'
777fc2b6b6b2f928
Std.Sat.CNF.nonempty_or_impossible
Mathlib/.lake/packages/lean4/src/lean/Std/Sat/CNF/Relabel.lean
theorem nonempty_or_impossible (f : CNF α) : Nonempty α ∨ ∃ n, f = List.replicate n []
case nil α : Type u_1 ⊢ Nonempty α ∨ ∃ n, [] = List.replicate n []
exact Or.inr ⟨0, rfl⟩
no goals
eb153cbe9df80b19
MeasureTheory.ae_nonneg_of_forall_setIntegral_nonneg
Mathlib/MeasureTheory/Function/AEEqOfIntegral.lean
theorem ae_nonneg_of_forall_setIntegral_nonneg (hf : Integrable f μ) (hf_zero : ∀ s, MeasurableSet s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f
α : Type u_1 m0 : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f μ hf_zero : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → 0 ≤ ∫ (x : α) in s, f x ∂μ b : ℝ hb_neg : b < 0 s : Set α := {x | f x ≤ b} hs : NullMeasurableSet s μ mus : μ s < ⊤ ⊢ ∀ᵐ (x : α) ∂μ, x ∈ s → f x ≤ b
exact Eventually.of_forall fun x hxs => hxs
no goals
d52a385303ec1354
MvPowerSeries.WithPiTopology.tendsto_pow_of_constantCoeff_nilpotent_iff
Mathlib/RingTheory/MvPowerSeries/PiTopology.lean
theorem tendsto_pow_of_constantCoeff_nilpotent_iff [CommRing R] [DiscreteTopology R] (f) : Tendsto (fun n : ℕ => f ^ n) atTop (nhds 0) ↔ IsNilpotent (constantCoeff σ R f)
σ : Type u_1 R : Type u_2 inst✝² : TopologicalSpace R inst✝¹ : CommRing R inst✝ : DiscreteTopology R f : MvPowerSeries σ R h : Tendsto (fun n => f ^ n) atTop (nhds 0) this : Tendsto (fun n => (constantCoeff σ R) (f ^ n)) atTop (nhds 0) ⊢ IsNilpotent ((constantCoeff σ R) f)
simp only [tendsto_def] at this
σ : Type u_1 R : Type u_2 inst✝² : TopologicalSpace R inst✝¹ : CommRing R inst✝ : DiscreteTopology R f : MvPowerSeries σ R h : Tendsto (fun n => f ^ n) atTop (nhds 0) this : ∀ s ∈ nhds 0, (fun n => (constantCoeff σ R) (f ^ n)) ⁻¹' s ∈ atTop ⊢ IsNilpotent ((constantCoeff σ R) f)
75b216f0c0004b82
RCLike.add_conj
Mathlib/Analysis/RCLike/Basic.lean
theorem add_conj (z : K) : z + conj z = 2 * re z := calc z + conj z = re z + im z * I + (re z - im z * I)
K : Type u_1 inst✝ : RCLike K z : K ⊢ ↑(re z) + ↑(im z) * I + (↑(re z) - ↑(im z) * I) = 2 * ↑(re z)
rw [add_add_sub_cancel, two_mul]
no goals
935131c31d9ee0b1
Array.exists_of_eraseP
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Array/Erase.lean
theorem exists_of_eraseP {l : Array α} {a} (hm : a ∈ l) (hp : p a) : ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁.push a ++ l₂ ∧ l.eraseP p = l₁ ++ l₂
α : Type u_1 p : α → Bool l : Array α a : α hm : a ∈ l hp : p a = true ⊢ ∃ a l₁ l₂, (∀ (b : α), b ∈ l₁ → ¬p b = true) ∧ p a = true ∧ l = l₁.push a ++ l₂ ∧ l.eraseP p = l₁ ++ l₂
rcases l with ⟨l⟩
case mk α : Type u_1 p : α → Bool a : α hp : p a = true l : List α hm : a ∈ { toList := l } ⊢ ∃ a l₁ l₂, (∀ (b : α), b ∈ l₁ → ¬p b = true) ∧ p a = true ∧ { toList := l } = l₁.push a ++ l₂ ∧ { toList := l }.eraseP p = l₁ ++ l₂
3081e6f43f7730fa
Matrix.zpow_sub_one
Mathlib/LinearAlgebra/Matrix/ZPow.lean
theorem zpow_sub_one {A : M} (h : IsUnit A.det) (n : ℤ) : A ^ (n - 1) = A ^ n * A⁻¹ := calc A ^ (n - 1) = A ^ (n - 1) * A * A⁻¹
n' : Type u_1 inst✝² : DecidableEq n' inst✝¹ : Fintype n' R : Type u_2 inst✝ : CommRing R A : M h : IsUnit A.det n : ℤ ⊢ A ^ (n - 1) = A ^ (n - 1) * A * A⁻¹
rw [mul_assoc, mul_nonsing_inv _ h, mul_one]
no goals
21343db4aa6e3915
Complex.norm_sub_mem_Icc_angle
Mathlib/Analysis/Complex/Angle.lean
/-- Chord-length is a multiple of arc-length up to constants. -/ lemma norm_sub_mem_Icc_angle (hx : ‖x‖ = 1) (hy : ‖y‖ = 1) : ‖x - y‖ ∈ Icc (2 / π * angle x y) (angle x y)
x y : ℂ hy : ‖1‖ = 1 θ : ℝ hθ : θ ∈ Ioc (-π) π ⊢ 2 * (1 - Real.cos θ) = (Real.cos θ - 1) ^ 2 + Real.sin θ ^ 2
linear_combination -θ.cos_sq_add_sin_sq
no goals
5f1a2d709d27832f
UniformSpace.secondCountable_of_separable
Mathlib/Topology/UniformSpace/Cauchy.lean
theorem secondCountable_of_separable [SeparableSpace α] : SecondCountableTopology α
case intro.intro.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u uniformSpace : UniformSpace α inst✝¹ : (𝓤 α).IsCountablyGenerated inst✝ : SeparableSpace α s : Set α hsc : s.Countable hsd : Dense s t : ℕ → Set (α × α) h_basis : (𝓤 α).HasAntitoneBasis t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V U : Set (α × α) hU : U ∈ 𝓤 α hUV : ball x U ⊆ V U' : Set (α × α) hU' : U' ∈ 𝓤 α left✝ : ∀ {a b : α}, (a, b) ∈ U' → (b, a) ∈ U' hUU' : U' ○ U' ⊆ U k : ℕ hk : t k ⊆ U' y : α hxy : y ∈ ball x (t k) hys : y ∈ s ⊢ ∃ v, (∃ i ∈ s, ∃ y, ball i (t y) = v) ∧ x ∈ v ∧ v ⊆ V
refine ⟨_, ⟨y, hys, k, rfl⟩, (hts k).subset hxy, fun z hz => ?_⟩
case intro.intro.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u uniformSpace : UniformSpace α inst✝¹ : (𝓤 α).IsCountablyGenerated inst✝ : SeparableSpace α s : Set α hsc : s.Countable hsd : Dense s t : ℕ → Set (α × α) h_basis : (𝓤 α).HasAntitoneBasis t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V U : Set (α × α) hU : U ∈ 𝓤 α hUV : ball x U ⊆ V U' : Set (α × α) hU' : U' ∈ 𝓤 α left✝ : ∀ {a b : α}, (a, b) ∈ U' → (b, a) ∈ U' hUU' : U' ○ U' ⊆ U k : ℕ hk : t k ⊆ U' y : α hxy : y ∈ ball x (t k) hys : y ∈ s z : α hz : z ∈ ball y (t k) ⊢ z ∈ V
4ad08f66c78319f3
Std.Tactic.BVDecide.BVExpr.bitblast.go_decl_eq
Mathlib/.lake/packages/lean4/src/lean/Std/Tactic/BVDecide/Bitblast/BVExpr/Circuit/Impl/Expr.lean
theorem bitblast.go_decl_eq (aig : AIG BVBit) (expr : BVExpr w) : ∀ (idx : Nat) (h1) (h2), (go aig expr).val.aig.decls[idx]'h2 = aig.decls[idx]'h1
case const w idx w✝ : Nat val✝ : BitVec w✝ aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (const val✝)).val.aig.decls.size ⊢ (go aig (const val✝)).val.aig.decls[idx] = aig.decls[idx]
dsimp only [go]
case const w idx w✝ : Nat val✝ : BitVec w✝ aig : AIG BVBit h1 : idx < aig.decls.size h2 : idx < (go aig (const val✝)).val.aig.decls.size ⊢ (blastConst aig val✝).aig.decls[idx] = aig.decls[idx]
f92988d5a1595b39
ContinuousMultilinearMap.changeOrigin_toFormalMultilinearSeries
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem changeOrigin_toFormalMultilinearSeries [DecidableEq ι] : continuousMultilinearCurryFin1 𝕜 (∀ i, E i) F (f.toFormalMultilinearSeries.changeOrigin x 1) = f.linearDeriv x
case h.inr 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝³ : (i : ι) → NormedAddCommGroup (E i) inst✝² : (i : ι) → NormedSpace 𝕜 (E i) inst✝¹ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F x : (i : ι) → E i inst✝ : DecidableEq ι y : (i : ι) → E i h✝ : Nonempty ι ⊢ (∑ a : { s // #s = Fintype.card ι - 1 }, ((f.toFormalMultilinearSeries.changeOriginSeriesTerm 1 (Fintype.card ι - 1) ↑a ⋯) fun x_1 => x) fun x => y) = ∑ i : ι, f (Function.update x i (y i))
simp_rw [changeOriginSeriesTerm_apply]
case h.inr 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 F : Type v inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝³ : (i : ι) → NormedAddCommGroup (E i) inst✝² : (i : ι) → NormedSpace 𝕜 (E i) inst✝¹ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F x : (i : ι) → E i inst✝ : DecidableEq ι y : (i : ι) → E i h✝ : Nonempty ι ⊢ ∑ x_1 : { s // #s = Fintype.card ι - 1 }, (f.toFormalMultilinearSeries (1 + (Fintype.card ι - 1))) ((↑x_1).piecewise (fun x_2 => x) fun x => y) = ∑ i : ι, f (Function.update x i (y i))
d7dded01cf2a4e1b
QuaternionAlgebra.Basis.lift_mul
Mathlib/Algebra/QuaternionBasis.lean
theorem lift_mul (x y : ℍ[R,c₁,c₂,c₃]) : q.lift (x * y) = q.lift x * q.lift y
R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A c₁ c₂ c₃ : R q : Basis A c₁ c₂ c₃ x y : ℍ[R,c₁,c₂,c₃] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (x.imI * y.imI) • (c₁ • 1 + c₂ • q.i) + (x.imI * y.imJ) • q.k + (x.imI * y.imK) • (c₁ • q.j + c₂ • q.k) + (x.imJ * y.re) • q.j + (x.imJ * y.imI) • (c₂ • q.j + -q.k) + (x.imJ * c₃ * y.imJ) • 1 + (x.imJ * y.imK) • ((c₂ * c₃) • 1 + -(c₃ • q.i)) + (x.imK * y.re) • q.k + -((c₁ * x.imK * y.imI) • q.j) + (x.imK * c₃ * y.imJ) • q.i + -((c₁ * c₃ * x.imK * y.imK) • 1)
simp only [mul_re, sub_eq_add_neg, add_smul, neg_smul, mul_imI, ← add_assoc, mul_imJ, mul_imK]
R : Type u_1 A : Type u_2 inst✝² : CommRing R inst✝¹ : Ring A inst✝ : Algebra R A c₁ c₂ c₃ : R q : Basis A c₁ c₂ c₃ x y : ℍ[R,c₁,c₂,c₃] ⊢ (x.re * y.re) • 1 + (c₁ * x.imI * y.imI) • 1 + (c₃ * x.imJ * y.imJ) • 1 + (c₂ * c₃ * x.imJ * y.imK) • 1 + -((c₁ * c₃ * x.imK * y.imK) • 1) + (x.re * y.imI) • q.i + (x.imI * y.re) • q.i + (c₂ * x.imI * y.imI) • q.i + -((c₃ * x.imJ * y.imK) • q.i) + (c₃ * x.imK * y.imJ) • q.i + (x.re * y.imJ) • q.j + (c₁ * x.imI * y.imK) • q.j + (x.imJ * y.re) • q.j + (c₂ * x.imJ * y.imI) • q.j + -((c₁ * x.imK * y.imI) • q.j) + (x.re * y.imK) • q.k + (x.imI * y.imJ) • q.k + (c₂ * x.imI * y.imK) • q.k + -((x.imJ * y.imI) • q.k) + (x.imK * y.re) • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (x.imI * y.imI) • (c₁ • 1 + c₂ • q.i) + (x.imI * y.imJ) • q.k + (x.imI * y.imK) • (c₁ • q.j + c₂ • q.k) + (x.imJ * y.re) • q.j + (x.imJ * y.imI) • (c₂ • q.j + -q.k) + (x.imJ * c₃ * y.imJ) • 1 + (x.imJ * y.imK) • ((c₂ * c₃) • 1 + -(c₃ • q.i)) + (x.imK * y.re) • q.k + -((c₁ * x.imK * y.imI) • q.j) + (x.imK * c₃ * y.imJ) • q.i + -((c₁ * c₃ * x.imK * y.imK) • 1)
09bfbbd836e86c34
CategoryTheory.Dial.tensor_comp
Mathlib/CategoryTheory/Dialectica/Monoidal.lean
theorem tensor_comp {X₁ Y₁ Z₁ X₂ Y₂ Z₂ : Dial C} (f₁ : X₁ ⟶ Y₁) (f₂ : X₂ ⟶ Y₂) (g₁ : Y₁ ⟶ Z₁) (g₂ : Y₂ ⟶ Z₂) : tensorHom (f₁ ≫ g₁) (f₂ ≫ g₂) = tensorHom f₁ f₂ ≫ tensorHom g₁ g₂
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasFiniteProducts C inst✝ : HasPullbacks C X₁ Y₁ Z₁ X₂ Y₂ Z₂ : Dial C f₁ : X₁ ⟶ Y₁ f₂ : X₂ ⟶ Y₂ g₁ : Y₁ ⟶ Z₁ g₂ : Y₂ ⟶ Z₂ ⊢ tensorHom (f₁ ≫ g₁) (f₂ ≫ g₂) = tensorHom f₁ f₂ ≫ tensorHom g₁ g₂
ext <;> simp
case hF C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasFiniteProducts C inst✝ : HasPullbacks C X₁ Y₁ Z₁ X₂ Y₂ Z₂ : Dial C f₁ : X₁ ⟶ Y₁ f₂ : X₂ ⟶ Y₂ g₁ : Y₁ ⟶ Z₁ g₂ : Y₂ ⟶ Z₂ ⊢ π(prod.map π₁ π₁ ≫ π(π₁, prod.map f₁.f (𝟙 Z₁.tgt) ≫ g₁.F) ≫ f₁.F, prod.map π₂ π₂ ≫ π(π₁, prod.map f₂.f (𝟙 Z₂.tgt) ≫ g₂.F) ≫ f₂.F) = π(π(π₁ ≫ π₁, prod.map (π₁ ≫ f₁.f) π₁ ≫ g₁.F) ≫ f₁.F, π(π₁ ≫ π₂, prod.map (π₂ ≫ f₂.f) π₂ ≫ g₂.F) ≫ f₂.F)
1e9289a58304a4a7
Module.support_of_noZeroSMulDivisors
Mathlib/RingTheory/Support.lean
lemma Module.support_of_noZeroSMulDivisors [NoZeroSMulDivisors R M] [Nontrivial M] : Module.support R M = Set.univ
R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M ⊢ support R M = Set.univ
simp only [Set.eq_univ_iff_forall, mem_support_iff', ne_eq, smul_eq_zero, not_or]
R : Type u_1 M : Type u_2 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M ⊢ ∀ (x : PrimeSpectrum R), ∃ m, ∀ r ∉ x.asIdeal, ¬r = 0 ∧ ¬m = 0
40f3ce29daf90d9a
Ordinal.CNF_sorted
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)
b o : Ordinal.{u_1} ⊢ Sorted (fun x1 x2 => x1 > x2) (map Prod.fst (CNF b o))
refine CNFRec b ?_ (fun o ho IH ↦ ?_) o
case refine_1 b o : Ordinal.{u_1} ⊢ Sorted (fun x1 x2 => x1 > x2) (map Prod.fst (CNF b 0)) case refine_2 b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x1 x2 => x1 > x2) (map Prod.fst (CNF b (o % b ^ log b o))) ⊢ Sorted (fun x1 x2 => x1 > x2) (map Prod.fst (CNF b o))
d982c7966c162266
interior_subset_gauge_lt_one
Mathlib/Analysis/Convex/Gauge.lean
theorem interior_subset_gauge_lt_one (s : Set E) : interior s ⊆ { x | gauge s x < 1 }
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E ⊢ interior s ⊆ {x | gauge s x < 1}
intro x hx
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E s : Set E x : E hx : x ∈ interior s ⊢ x ∈ {x | gauge s x < 1}
3cd737264597e0ba
PMF.support_normalize
Mathlib/Probability/ProbabilityMassFunction/Constructions.lean
theorem support_normalize : (normalize f hf0 hf).support = Function.support f := Set.ext fun a => by simp [hf, mem_support_iff]
α : Type u_1 f : α → ℝ≥0∞ hf0 : tsum f ≠ 0 hf : tsum f ≠ ⊤ a : α ⊢ a ∈ (normalize f hf0 hf).support ↔ a ∈ Function.support f
simp [hf, mem_support_iff]
no goals
6e34b3d5b5061659
continuousAt_gauge_zero
Mathlib/Analysis/Convex/Gauge.lean
theorem continuousAt_gauge_zero (hs : s ∈ 𝓝 0) : ContinuousAt (gauge s) 0
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s : Set E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs : s ∈ 𝓝 0 ⊢ ContinuousAt (gauge s) 0
rw [ContinuousAt, gauge_zero]
E : Type u_2 inst✝³ : AddCommGroup E inst✝² : Module ℝ E s : Set E inst✝¹ : TopologicalSpace E inst✝ : ContinuousSMul ℝ E hs : s ∈ 𝓝 0 ⊢ Tendsto (gauge s) (𝓝 0) (𝓝 0)
5dd1f9e9b5f3bede
t2_separation_compact_nhds
Mathlib/Topology/Separation/Hausdorff.lean
theorem t2_separation_compact_nhds [LocallyCompactSpace X] [T2Space X] {x y : X} (h : x ≠ y) : ∃ u v, u ∈ 𝓝 x ∧ v ∈ 𝓝 y ∧ IsCompact u ∧ IsCompact v ∧ Disjoint u v
X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : LocallyCompactSpace X inst✝ : T2Space X x y : X h : x ≠ y ⊢ ∃ u v, u ∈ 𝓝 x ∧ v ∈ 𝓝 y ∧ IsCompact u ∧ IsCompact v ∧ Disjoint u v
simpa only [exists_prop, ← exists_and_left, and_comm, and_assoc, and_left_comm] using ((compact_basis_nhds x).disjoint_iff (compact_basis_nhds y)).1 (disjoint_nhds_nhds.2 h)
no goals
ee342c49880ccde1
sum_mul_eq_sub_integral_mul₀
Mathlib/NumberTheory/AbelSummation.lean
theorem sum_mul_eq_sub_integral_mul₀ (hc : c 0 = 0) (b : ℝ) (hf_diff : ∀ t ∈ Set.Icc 1 b, DifferentiableAt ℝ f t) (hf_int : IntegrableOn (deriv f) (Set.Icc 1 b)) : ∑ k ∈ Icc 0 ⌊b⌋₊, f k * c k = f b * (∑ k ∈ Icc 0 ⌊b⌋₊, c k) - ∫ t in Set.Ioc 1 b, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k
𝕜 : Type u_1 inst✝ : RCLike 𝕜 c : ℕ → 𝕜 f : ℝ → 𝕜 hc : c 0 = 0 b : ℝ hf_diff : ∀ t ∈ Set.Icc 1 b, DifferentiableAt ℝ f t hf_int : IntegrableOn (deriv f) (Set.Icc 1 b) volume ⊢ ∑ k ∈ Icc 0 ⌊b⌋₊, f ↑k * c k = f b * ∑ k ∈ Icc 0 ⌊b⌋₊, c k - ∫ (t : ℝ) in Set.Ioc 1 b, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k
obtain hb | hb := le_or_gt 1 b
case inl 𝕜 : Type u_1 inst✝ : RCLike 𝕜 c : ℕ → 𝕜 f : ℝ → 𝕜 hc : c 0 = 0 b : ℝ hf_diff : ∀ t ∈ Set.Icc 1 b, DifferentiableAt ℝ f t hf_int : IntegrableOn (deriv f) (Set.Icc 1 b) volume hb : 1 ≤ b ⊢ ∑ k ∈ Icc 0 ⌊b⌋₊, f ↑k * c k = f b * ∑ k ∈ Icc 0 ⌊b⌋₊, c k - ∫ (t : ℝ) in Set.Ioc 1 b, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k case inr 𝕜 : Type u_1 inst✝ : RCLike 𝕜 c : ℕ → 𝕜 f : ℝ → 𝕜 hc : c 0 = 0 b : ℝ hf_diff : ∀ t ∈ Set.Icc 1 b, DifferentiableAt ℝ f t hf_int : IntegrableOn (deriv f) (Set.Icc 1 b) volume hb : 1 > b ⊢ ∑ k ∈ Icc 0 ⌊b⌋₊, f ↑k * c k = f b * ∑ k ∈ Icc 0 ⌊b⌋₊, c k - ∫ (t : ℝ) in Set.Ioc 1 b, deriv f t * ∑ k ∈ Icc 0 ⌊t⌋₊, c k
715329581e1c96e7
Nat.minSqFac_has_prop
Mathlib/Data/Nat/Squarefree.lean
theorem minSqFac_has_prop (n : ℕ) : MinSqFacProp n (minSqFac n)
case neg.inr n : ℕ d2 : ¬2 ∣ n n0 : n > 0 ⊢ n.MinSqFacProp (n.minSqFacAux 3)
refine minSqFacAux_has_prop _ n0 0 rfl ?_
case neg.inr n : ℕ d2 : ¬2 ∣ n n0 : n > 0 ⊢ ∀ (m : ℕ), Prime m → m ∣ n → 3 ≤ m
60eba7de40a3a105
UniformContinuousOn.continuousOn
Mathlib/Topology/UniformSpace/Basic.lean
theorem UniformContinuousOn.continuousOn [UniformSpace α] [UniformSpace β] {f : α → β} {s : Set α} (h : UniformContinuousOn f s) : ContinuousOn f s
α : Type ua β : Type ub inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α h : UniformContinuousOn f s ⊢ ContinuousOn f s
rw [uniformContinuousOn_iff_restrict] at h
α : Type ua β : Type ub inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α h : UniformContinuous (s.restrict f) ⊢ ContinuousOn f s
5802946f1c9cbf58
irreducible_pow_sup_of_le
Mathlib/RingTheory/DedekindDomain/Ideal.lean
theorem irreducible_pow_sup_of_le (hJ : Irreducible J) (n : ℕ) (hn : n ≤ emultiplicity J I) : J ^ n ⊔ I = J ^ n
case neg T : Type u_4 inst✝¹ : CommRing T inst✝ : IsDedekindDomain T I J : Ideal T hJ : Irreducible J n : ℕ hn : ↑n ≤ emultiplicity J I hI : ¬I = ⊥ ⊢ n ≤ count J (normalizedFactors I)
rw [emultiplicity_eq_count_normalizedFactors hJ hI, normalize_eq J] at hn
case neg T : Type u_4 inst✝¹ : CommRing T inst✝ : IsDedekindDomain T I J : Ideal T hJ : Irreducible J n : ℕ hn : ↑n ≤ ↑(count J (normalizedFactors I)) hI : ¬I = ⊥ ⊢ n ≤ count J (normalizedFactors I)
c29a75c2640d6fa6
PadicInt.bojanic_mahler_step2
Mathlib/NumberTheory/Padics/MahlerBasis.lean
/-- Second step in Bojanić's proof of Mahler's theorem (equation (11) of [bojanic74]): show that values `Δ_[1]^[n + p ^ t] f 0` for large enough `n` are bounded by the max of `(‖f‖ / p ^ s)` and `1 / p` times a sup over values for smaller `n`. We use `nnnorm`s on the RHS since `Finset.sup` requires an order with a bottom element. -/ private lemma bojanic_mahler_step2 {f : C(ℤ_[p], E)} {s t : ℕ} (hst : ∀ x y : ℤ_[p], ‖x - y‖ ≤ p ^ (-t : ℤ) → ‖f x - f y‖ ≤ ‖f‖ / p ^ s) (n : ℕ) : ‖Δ_[1]^[n + p ^ t] f 0‖ ≤ max ↑((Finset.range (p ^ t - 1)).sup fun j ↦ ‖Δ_[1]^[n + (j + 1)] f 0‖₊ / p) (‖f‖ / p ^ s)
p : ℕ hp : Fact (Nat.Prime p) E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℚ_[p] E inst✝ : IsUltrametricDist E f : C(ℤ_[p], E) s t : ℕ hst : ∀ (x y : ℤ_[p]), ‖x - y‖ ≤ ↑p ^ (-↑t) → ‖f x - f y‖ ≤ ‖f‖ / ↑p ^ s n : ℕ ⊢ ‖Δ_[1]^[n + p ^ t] (⇑f) 0‖ ≤ ↑((range (p ^ t - 1)).sup fun j => ‖Δ_[1]^[n + (j + 1)] (⇑f) 0‖₊ / ↑p) ⊔ ‖f‖ / ↑p ^ s
rw [bojanic_mahler_step1 _ _ (one_le_pow₀ hp.out.one_le)]
p : ℕ hp : Fact (Nat.Prime p) E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℚ_[p] E inst✝ : IsUltrametricDist E f : C(ℤ_[p], E) s t : ℕ hst : ∀ (x y : ℤ_[p]), ‖x - y‖ ≤ ↑p ^ (-↑t) → ‖f x - f y‖ ≤ ‖f‖ / ↑p ^ s n : ℕ ⊢ ‖-∑ j ∈ range (p ^ t - 1), (p ^ t).choose (j + 1) • Δ_[1]^[n + (j + 1)] (⇑f) 0 + ∑ k ∈ range (n + 1), ((-1) ^ (n - k) * ↑(n.choose k)) • (f (↑k + ↑(p ^ t)) - f ↑k)‖ ≤ ↑((range (p ^ t - 1)).sup fun j => ‖Δ_[1]^[n + (j + 1)] (⇑f) 0‖₊ / ↑p) ⊔ ‖f‖ / ↑p ^ s
2db3408803885b9e
Real.strictConcaveOn_rpow
Mathlib/Analysis/Convex/SpecificFunctions/Pow.lean
lemma strictConcaveOn_rpow {p : ℝ} (hp₀ : 0 < p) (hp₁ : p < 1) : StrictConcaveOn ℝ (Set.Ici 0) fun x : ℝ ↦ x ^ p
case a p : ℝ hp₀ : 0 < p hp₁ : p < 1 x : ℝ hx : x ∈ Ici 0 y : ℝ hy : y ∈ Ici 0 hxy : x ≠ y a b : ℝ ha : 0 < a hb : 0 < b hab : a + b = 1 x' : ℝ≥0 := ⟨x, hx⟩ y' : ℝ≥0 := ⟨y, hy⟩ a' : ℝ≥0 := ⟨a, ⋯⟩ b' : ℝ≥0 := ⟨b, ⋯⟩ hxy' : x' ≠ y' ⊢ ↑(a' + b') = ↑1
simp [a', b', hab]
no goals
e355702cbbe8ec4b
IncidenceAlgebra.mu_toDual
Mathlib/Combinatorics/Enumerative/IncidenceAlgebra.lean
@[simp] lemma mu_toDual (a b : α) : mu 𝕜 (toDual a) (toDual b) = mu 𝕜 b a
𝕜 : Type u_2 α : Type u_5 inst✝³ : Ring 𝕜 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrder α inst✝ : DecidableEq α this : DecidableRel fun x1 x2 => x1 ≤ x2 := Classical.decRel fun x1 x2 => x1 ≤ x2 mud : IncidenceAlgebra 𝕜 αᵒᵈ := { toFun := fun a b => (mu 𝕜) (ofDual b) (ofDual a), eq_zero_of_not_le' := ⋯ } ⊢ mud * zeta 𝕜 = 1
ext a b
case h 𝕜 : Type u_2 α : Type u_5 inst✝³ : Ring 𝕜 inst✝² : PartialOrder α inst✝¹ : LocallyFiniteOrder α inst✝ : DecidableEq α this : DecidableRel fun x1 x2 => x1 ≤ x2 := Classical.decRel fun x1 x2 => x1 ≤ x2 mud : IncidenceAlgebra 𝕜 αᵒᵈ := { toFun := fun a b => (mu 𝕜) (ofDual b) (ofDual a), eq_zero_of_not_le' := ⋯ } a b : αᵒᵈ a✝ : a ≤ b ⊢ (mud * zeta 𝕜) a b = 1 a b
95f4eed14862eb7a
BoundedContinuousFunction.isBounded_range_integral
Mathlib/MeasureTheory/Integral/BoundedContinuousFunction.lean
lemma isBounded_range_integral {ι : Type*} (μs : ι → Measure X) [∀ i, IsProbabilityMeasure (μs i)] (f : X →ᵇ E) : Bornology.IsBounded (Set.range (fun i ↦ ∫ x, f x ∂ (μs i)))
case intro X : Type u_1 inst✝⁸ : MeasurableSpace X inst✝⁷ : TopologicalSpace X E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : OpensMeasurableSpace X inst✝⁴ : SecondCountableTopology E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : NormedSpace ℝ E ι : Type u_3 μs : ι → Measure X inst✝ : ∀ (i : ι), IsProbabilityMeasure (μs i) f : X →ᵇ E v : E i : ι hi : (fun i => ∫ (x : X), f x ∂μs i) i = v ⊢ ‖v‖ ≤ ‖f‖
rw [← hi]
case intro X : Type u_1 inst✝⁸ : MeasurableSpace X inst✝⁷ : TopologicalSpace X E : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : OpensMeasurableSpace X inst✝⁴ : SecondCountableTopology E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : NormedSpace ℝ E ι : Type u_3 μs : ι → Measure X inst✝ : ∀ (i : ι), IsProbabilityMeasure (μs i) f : X →ᵇ E v : E i : ι hi : (fun i => ∫ (x : X), f x ∂μs i) i = v ⊢ ‖(fun i => ∫ (x : X), f x ∂μs i) i‖ ≤ ‖f‖
ab2ff73039861d6a
Set.range_ite_subset'
Mathlib/Data/Set/Image.lean
theorem range_ite_subset' {p : Prop} [Decidable p] {f g : α → β} : range (if p then f else g) ⊆ range f ∪ range g
case neg α : Type u_1 β : Type u_2 p : Prop inst✝ : Decidable p f g : α → β h : ¬p ⊢ range g ⊆ range f ∪ range g
exact subset_union_right
no goals
62472e83fd94611c
Basis.maximal
Mathlib/LinearAlgebra/Basis/Basic.lean
theorem maximal [Nontrivial R] (b : Basis ι R M) : b.linearIndependent.Maximal := fun w hi h => by -- If `w` is strictly bigger than `range b`, apply le_antisymm h -- then choose some `x ∈ w \ range b`, intro x p by_contra q -- and write it in terms of the basis. have e := b.linearCombination_repr x -- This then expresses `x` as a linear combination -- of elements of `w` which are in the range of `b`, let u : ι ↪ w := ⟨fun i => ⟨b i, h ⟨i, rfl⟩⟩, fun i i' r => b.injective (by simpa only [Subtype.mk_eq_mk] using r)⟩ simp_rw [Finsupp.linearCombination_apply] at e change ((b.repr x).sum fun (i : ι) (a : R) ↦ a • (u i : M)) = ((⟨x, p⟩ : w) : M) at e rw [← Finsupp.sum_embDomain (f := u) (g := fun x r ↦ r • (x : M)), ← Finsupp.linearCombination_apply] at e -- Now we can contradict the linear independence of `hi` refine hi.linearCombination_ne_of_not_mem_support _ ?_ e simp only [Finset.mem_map, Finsupp.support_embDomain] rintro ⟨j, -, W⟩ simp only [u, Embedding.coeFn_mk, Subtype.mk_eq_mk] at W apply q ⟨j, W⟩
ι : Type u_1 R : Type u_3 M : Type u_5 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : range ⇑b ≤ w ⊢ w ≤ range ⇑b
intro x p
ι : Type u_1 R : Type u_3 M : Type u_5 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : range ⇑b ≤ w x : M p : x ∈ w ⊢ x ∈ range ⇑b
26f21cbf99980896
PowerSeries.trunc_X
Mathlib/RingTheory/PowerSeries/Trunc.lean
theorem trunc_X (n) : trunc (n + 2) X = (Polynomial.X : R[X])
case a R : Type u_1 inst✝ : Semiring R n d : ℕ ⊢ (if d < n + 2 then if d = 1 then 1 else 0 else 0) = Polynomial.X.coeff d
split_ifs with h₁ h₂
case pos R : Type u_1 inst✝ : Semiring R n d : ℕ h₁ : d < n + 2 h₂ : d = 1 ⊢ 1 = Polynomial.X.coeff d case neg R : Type u_1 inst✝ : Semiring R n d : ℕ h₁ : d < n + 2 h₂ : ¬d = 1 ⊢ 0 = Polynomial.X.coeff d case neg R : Type u_1 inst✝ : Semiring R n d : ℕ h₁ : ¬d < n + 2 ⊢ 0 = Polynomial.X.coeff d
b873ec511fef51ee
MeasureTheory.Measure.pi_pi_aux
Mathlib/MeasureTheory/Constructions/Pi.lean
theorem pi_pi_aux [∀ i, SigmaFinite (μ i)] (s : ∀ i, Set (α i)) (hs : ∀ i, MeasurableSet (s i)) : Measure.pi μ (pi univ s) = ∏ i, μ i (s i)
case refine_2 ι : Type u_1 α : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → MeasurableSpace (α i) μ : (i : ι) → Measure (α i) inst✝ : ∀ (i : ι), SigmaFinite (μ i) s : (i : ι) → Set (α i) hs : ∀ (i : ι), MeasurableSet (s i) this : Encodable ι ⊢ (pi' μ) (univ.pi s) ≤ (OuterMeasure.pi fun i => (μ i).toOuterMeasure) (univ.pi s)
suffices (pi' μ).toOuterMeasure ≤ OuterMeasure.pi fun i => (μ i).toOuterMeasure by exact this _
case refine_2 ι : Type u_1 α : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → MeasurableSpace (α i) μ : (i : ι) → Measure (α i) inst✝ : ∀ (i : ι), SigmaFinite (μ i) s : (i : ι) → Set (α i) hs : ∀ (i : ι), MeasurableSet (s i) this : Encodable ι ⊢ (pi' μ).toOuterMeasure ≤ OuterMeasure.pi fun i => (μ i).toOuterMeasure
d6eb1f2f929e1b76
IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic
Mathlib/NumberTheory/Cyclotomic/Basic.lean
theorem adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic {n : ℕ+} [IsDomain B] {ζ : B} (hζ : IsPrimitiveRoot ζ n) : adjoin A ((cyclotomic n A).rootSet B) = adjoin A {ζ}
case refine_2 A : Type u B : Type v inst✝³ : CommRing A inst✝² : CommRing B inst✝¹ : Algebra A B n : ℕ+ inst✝ : IsDomain B ζ : B hζ : IsPrimitiveRoot ζ ↑n x : B hx : x = ζ ⊢ x ∈ (cyclotomic (↑n) A).rootSet B
simpa only [hx, mem_rootSet', map_cyclotomic, aeval_def, ← eval_map, IsRoot] using And.intro (cyclotomic_ne_zero n B) (hζ.isRoot_cyclotomic n.pos)
no goals
47345c8f34a7fd33
factorsThrough_of_pullbackCondition
Mathlib/Condensed/TopComparison.lean
theorem factorsThrough_of_pullbackCondition {Z B : C} {π : Z ⟶ B} [HasPullback π π] [PreservesLimit (cospan π π) G] {a : C(G.obj Z, X)} (ha : a ∘ (G.map (pullback.fst _ _)) = a ∘ (G.map (pullback.snd π π))) : Function.FactorsThrough a (G.map π)
C : Type u inst✝³ : Category.{v, u} C G : C ⥤ TopCat X : Type w' inst✝² : TopologicalSpace X Z B : C π : Z ⟶ B inst✝¹ : HasPullback π π inst✝ : PreservesLimit (cospan π π) G a : C(↑(G.obj Z), X) ha : ⇑a ∘ ⇑(ConcreteCategory.hom (G.map (pullback.fst π π))) = ⇑a ∘ ⇑(ConcreteCategory.hom (G.map (pullback.snd π π))) x y : ↑(G.obj Z) hxy : (ConcreteCategory.hom (G.map π)) x = (ConcreteCategory.hom (G.map π)) y ⊢ a x = a y
let xy : G.obj (pullback π π) := (PreservesPullback.iso G π π).inv <| (TopCat.pullbackIsoProdSubtype (G.map π) (G.map π)).inv ⟨(x, y), hxy⟩
C : Type u inst✝³ : Category.{v, u} C G : C ⥤ TopCat X : Type w' inst✝² : TopologicalSpace X Z B : C π : Z ⟶ B inst✝¹ : HasPullback π π inst✝ : PreservesLimit (cospan π π) G a : C(↑(G.obj Z), X) ha : ⇑a ∘ ⇑(ConcreteCategory.hom (G.map (pullback.fst π π))) = ⇑a ∘ ⇑(ConcreteCategory.hom (G.map (pullback.snd π π))) x y : ↑(G.obj Z) hxy : (ConcreteCategory.hom (G.map π)) x = (ConcreteCategory.hom (G.map π)) y xy : ↑(G.obj (pullback π π)) := (ConcreteCategory.hom (PreservesPullback.iso G π π).inv) ((ConcreteCategory.hom (TopCat.pullbackIsoProdSubtype (G.map π) (G.map π)).inv) ⟨(x, y), hxy⟩) ⊢ a x = a y
579a4db837d3077a
Module.Finite.exists_fin'
Mathlib/RingTheory/Finiteness/Cardinality.lean
/-- A finite module admits a surjective linear map from a finite free module. -/ lemma exists_fin' [Module.Finite R M] : ∃ (n : ℕ) (f : (Fin n → R) →ₗ[R] M), Surjective f
R : Type u M : Type u_3 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module.Finite R M ⊢ ∃ n f, Surjective ⇑f
have ⟨n, s, hs⟩ := exists_fin (R := R) (M := M)
R : Type u M : Type u_3 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : Module.Finite R M n : ℕ s : Fin n → M hs : span R (Set.range s) = ⊤ ⊢ ∃ n f, Surjective ⇑f
a44152e4175c7cd5
intervalIntegral.integral_comp_neg
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
theorem integral_comp_neg : (∫ x in a..b, f (-x)) = ∫ x in -b..-a, f x
E : Type u_3 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a b : ℝ f : ℝ → E ⊢ ∫ (x : ℝ) in a..b, f (-x) = ∫ (x : ℝ) in -b..-a, f x
simpa only [zero_sub] using integral_comp_sub_left f 0
no goals
3ac1cbee3bf8f34a
VectorFourier.integral_bilin_fourierIntegral_eq_flip
Mathlib/Analysis/Fourier/FourierTransform.lean
theorem integral_bilin_fourierIntegral_eq_flip {f : V → E} {g : W → F} (M : E →L[ℂ] F →L[ℂ] G) (he : Continuous e) (hL : Continuous fun p : V × W ↦ L p.1 p.2) (hf : Integrable f μ) (hg : Integrable g ν) : ∫ ξ, M (fourierIntegral e μ L f ξ) (g ξ) ∂ν = ∫ x, M (f x) (fourierIntegral e ν L.flip g x) ∂μ
case hf.h.h 𝕜 : Type u_1 inst✝²³ : CommRing 𝕜 V : Type u_2 inst✝²² : AddCommGroup V inst✝²¹ : Module 𝕜 V inst✝²⁰ : MeasurableSpace V W : Type u_3 inst✝¹⁹ : AddCommGroup W inst✝¹⁸ : Module 𝕜 W E : Type u_4 F : Type u_5 G : Type u_6 inst✝¹⁷ : NormedAddCommGroup E inst✝¹⁶ : NormedSpace ℂ E inst✝¹⁵ : NormedAddCommGroup F inst✝¹⁴ : NormedSpace ℂ F inst✝¹³ : NormedAddCommGroup G inst✝¹² : NormedSpace ℂ G inst✝¹¹ : TopologicalSpace 𝕜 inst✝¹⁰ : IsTopologicalRing 𝕜 inst✝⁹ : TopologicalSpace V inst✝⁸ : BorelSpace V inst✝⁷ : TopologicalSpace W inst✝⁶ : MeasurableSpace W inst✝⁵ : BorelSpace W e : AddChar 𝕜 𝕊 μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 ν : Measure W inst✝⁴ : SigmaFinite μ inst✝³ : SigmaFinite ν inst✝² : SecondCountableTopology V inst✝¹ : CompleteSpace E inst✝ : CompleteSpace F f : V → E g : W → F M : E →L[ℂ] F →L[ℂ] G he : Continuous ⇑e hL : Continuous fun p => (L p.1) p.2 hf : Integrable f μ hg : Integrable g ν hG : CompleteSpace G this : Integrable (fun p => ‖M‖ * (‖g p.1‖ * ‖f p.2‖)) (ν.prod μ) ξ : W x : V ⊢ ‖(M (f x)) (g ξ)‖ ≤ ‖M‖ * ‖f (ξ, x).2‖ * ‖g (ξ, x).1‖
exact M.le_opNorm₂ (f x) (g ξ)
no goals
81aa292dd9850619
List.dedup_eq_cons
Mathlib/Data/List/Dedup.lean
theorem dedup_eq_cons (l : List α) (a : α) (l' : List α) : l.dedup = a :: l' ↔ a ∈ l ∧ a ∉ l' ∧ l.dedup.tail = l'
case refine_1 α : Type u_1 inst✝ : DecidableEq α l : List α a : α l' : List α h : l.dedup = a :: l' ⊢ a ∈ l ∧ a ∉ l' ∧ l.dedup.tail = l'
refine ⟨mem_dedup.1 (h.symm ▸ mem_cons_self _ _), fun ha => ?_, by rw [h, tail_cons]⟩
case refine_1 α : Type u_1 inst✝ : DecidableEq α l : List α a : α l' : List α h : l.dedup = a :: l' ha : a ∈ l' ⊢ False
31be0178b993dde6
iInter_halfSpaces_eq
Mathlib/Analysis/NormedSpace/HahnBanach/Separation.lean
theorem iInter_halfSpaces_eq (hs₁ : Convex ℝ s) (hs₂ : IsClosed s) : ⋂ l : E →L[ℝ] ℝ, { x | ∃ y ∈ s, l x ≤ l y } = s
E : Type u_2 inst✝⁵ : TopologicalSpace E inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s : Set E inst✝² : IsTopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E hs₁ : Convex ℝ s hs₂ : IsClosed s ⊢ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y ∈ s, i x ≤ i y} = s
refine Set.Subset.antisymm (fun x hx => ?_) fun x hx l => ⟨x, hx, le_rfl⟩
E : Type u_2 inst✝⁵ : TopologicalSpace E inst✝⁴ : AddCommGroup E inst✝³ : Module ℝ E s : Set E inst✝² : IsTopologicalAddGroup E inst✝¹ : ContinuousSMul ℝ E inst✝ : LocallyConvexSpace ℝ E hs₁ : Convex ℝ s hs₂ : IsClosed s x : E hx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y ∈ s, i x ≤ i y} ⊢ x ∈ s
62fc6b991b51d567
AlgebraicGeometry.Scheme.Opens.toSpecΓ_top
Mathlib/AlgebraicGeometry/AffineScheme.lean
@[simp] lemma Scheme.Opens.toSpecΓ_top {X : Scheme} : (⊤ : X.Opens).toSpecΓ = (⊤ : X.Opens).ι ≫ X.toSpecΓ
X : Scheme ⊢ (↑⊤).toSpecΓ ≫ Spec.map (X.presheaf.map (eqToHom ⋯)) = (↑⊤).toSpecΓ ≫ Spec.map (X.presheaf.map (homOfLE ⋯).op)
rfl
no goals
30e215b07924d3af
polynomialFunctions.comap_compRightAlgHom_iccHomeoI
Mathlib/Topology/ContinuousMap/Polynomial.lean
theorem polynomialFunctions.comap_compRightAlgHom_iccHomeoI (a b : ℝ) (h : a < b) : (polynomialFunctions I).comap (compRightAlgHom ℝ ℝ (iccHomeoI a b h).symm) = polynomialFunctions (Set.Icc a b)
case h.mpr.intro.intro.refine_2.h a b : ℝ h : a < b p : ℝ[X] q : ℝ[X] := p.comp ((b - a) • X + Polynomial.C a) x : ↑I ⊢ (↑(toContinuousMapOnAlgHom I) q) x = (↑(compRightAlgHom ℝ ℝ ↑(iccHomeoI a b h).symm) (↑(toContinuousMapOnAlgHom (Set.Icc a b)) p)) x
simp [q, mul_comm]
no goals
c86eff4051268cff
Submodule.exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul
Mathlib/RingTheory/Finiteness/Nakayama.lean
theorem exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul {R : Type*} [CommRing R] {M : Type*} [AddCommGroup M] [Module R M] (I : Ideal R) (N : Submodule R M) (hn : N.FG) (hin : N ≤ I • N) : ∃ r : R, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = (0 : M)
case intro.intro.refine_2 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R N : Submodule R M s✝ : Set M hfs : s✝.Finite i : M s : Set M x✝¹ : i ∉ s x✝ : s.Finite ih : (∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N) → ∃ r, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = 0 H : ∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R (insert i s)) ∧ insert i s ⊆ ↑N ⊢ ∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N
rcases H with ⟨r, hr1, hrn, hs⟩
case intro.intro.refine_2.intro.intro.intro R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R N : Submodule R M s✝ : Set M hfs : s✝.Finite i : M s : Set M x✝¹ : i ∉ s x✝ : s.Finite ih : (∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N) → ∃ r, r - 1 ∈ I ∧ ∀ n ∈ N, r • n = 0 r : R hr1 : r - 1 ∈ I hrn : N ≤ comap ((LinearMap.lsmul R M) r) (I • span R (insert i s)) hs : insert i s ⊆ ↑N ⊢ ∃ r, r - 1 ∈ I ∧ N ≤ comap ((LinearMap.lsmul R M) r) (I • span R s) ∧ s ⊆ ↑N
ddde3c87abdd1812
LieSubmodule.isCompactElement_lieSpan_singleton
Mathlib/Algebra/Lie/Submodule.lean
lemma isCompactElement_lieSpan_singleton (m : M) : CompleteLattice.IsCompactElement (lieSpan R L {m})
R : Type u L : Type v M : Type w inst✝⁴ : CommRing R inst✝³ : LieRing L inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : LieRingModule L M m : M s : Set (LieSubmodule R L M) hne : s.Nonempty hdir : DirectedOn (fun x1 x2 => x1 ≤ x2) s hsup : m ∈ ↑(sSup s) this : ↑(sSup s) = ⋃ N ∈ s, ↑N N : LieSubmodule R L M hN : N ∈ s hN' : m ∈ N ⊢ lieSpan R L {m} ≤ N
simpa
no goals
016ba20f16d8a5de
exists_continuous_add_one_of_isCompact_nnreal
Mathlib/MeasureTheory/Integral/RieszMarkovKakutani/Basic.lean
lemma exists_continuous_add_one_of_isCompact_nnreal {s₀ s₁ : Set X} {t : Set X} (s₀_compact : IsCompact s₀) (s₁_compact : IsCompact s₁) (t_compact : IsCompact t) (disj : Disjoint s₀ s₁) (hst : s₀ ∪ s₁ ⊆ t) : ∃ (f₀ f₁ : C_c(X, ℝ≥0)), EqOn f₀ 1 s₀ ∧ EqOn f₁ 1 s₁ ∧ EqOn (f₀ + f₁) 1 t
case h.refine_3 X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X s₀ s₁ t : Set X s₀_compact : IsCompact s₀ s₁_compact : IsCompact s₁ t_compact : IsCompact t disj : Disjoint s₀ s₁ hst : s₀ ∪ s₁ ⊆ t so : Fin 2 → Set X := fun j => if j = 0 then s₀ᶜ else s₁ᶜ hso : so = fun j => if j = 0 then s₀ᶜ else s₁ᶜ soopen : ∀ (j : Fin 2), IsOpen (so j) hsot : t ⊆ ⋃ j, so j f : Fin 2 → C(X, ℝ) f_supp_in_so : ∀ (i : Fin 2), tsupport ⇑(f i) ⊆ so i sum_f_one_on_t : EqOn (∑ i : Fin 2, ⇑(f i)) 1 t f_in_icc : ∀ (i : Fin 2) (x : X), (f i) x ∈ Icc 0 1 f_hcs : ∀ (i : Fin 2), HasCompactSupport ⇑(f i) sum_one_x : ∀ x ∈ t, (f 0) x + (f 1) x = 1 x : X hx : x ∈ t ⊢ ((f 1) x).toNNReal + ((f 0) x).toNNReal = 1
rw [Real.toNNReal_add_toNNReal (f_in_icc 1 x).1 (f_in_icc 0 x).1, add_comm]
case h.refine_3 X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : T2Space X inst✝ : LocallyCompactSpace X s₀ s₁ t : Set X s₀_compact : IsCompact s₀ s₁_compact : IsCompact s₁ t_compact : IsCompact t disj : Disjoint s₀ s₁ hst : s₀ ∪ s₁ ⊆ t so : Fin 2 → Set X := fun j => if j = 0 then s₀ᶜ else s₁ᶜ hso : so = fun j => if j = 0 then s₀ᶜ else s₁ᶜ soopen : ∀ (j : Fin 2), IsOpen (so j) hsot : t ⊆ ⋃ j, so j f : Fin 2 → C(X, ℝ) f_supp_in_so : ∀ (i : Fin 2), tsupport ⇑(f i) ⊆ so i sum_f_one_on_t : EqOn (∑ i : Fin 2, ⇑(f i)) 1 t f_in_icc : ∀ (i : Fin 2) (x : X), (f i) x ∈ Icc 0 1 f_hcs : ∀ (i : Fin 2), HasCompactSupport ⇑(f i) sum_one_x : ∀ x ∈ t, (f 0) x + (f 1) x = 1 x : X hx : x ∈ t ⊢ ((f 0) x + (f 1) x).toNNReal = 1
c2d96a23593bed78
AddCircle.closedBall_ae_eq_ball
Mathlib/MeasureTheory/Group/AddCircle.lean
theorem closedBall_ae_eq_ball {x : AddCircle T} {ε : ℝ} : closedBall x ε =ᵐ[volume] ball x ε
T : ℝ hT : Fact (0 < T) x : AddCircle T ε : ℝ ⊢ closedBall x ε =ᶠ[ae volume] ball x ε
rcases le_or_lt ε 0 with hε | hε
case inl T : ℝ hT : Fact (0 < T) x : AddCircle T ε : ℝ hε : ε ≤ 0 ⊢ closedBall x ε =ᶠ[ae volume] ball x ε case inr T : ℝ hT : Fact (0 < T) x : AddCircle T ε : ℝ hε : 0 < ε ⊢ closedBall x ε =ᶠ[ae volume] ball x ε
d4d4a4368219224a
DerivedCategory.mem_distTriang_iff
Mathlib/Algebra/Homology/DerivedCategory/Basic.lean
lemma mem_distTriang_iff (T : Triangle (DerivedCategory C)) : (T ∈ distTriang (DerivedCategory C)) ↔ ∃ (X Y : CochainComplex C ℤ) (f : X ⟶ Y), Nonempty (T ≅ Q.mapTriangle.obj (CochainComplex.mappingCone.triangle f))
C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : HasDerivedCategory C T : Triangle (DerivedCategory C) ⊢ T ∈ distinguishedTriangles ↔ ∃ X Y f, Nonempty (T ≅ Q.mapTriangle.obj (CochainComplex.mappingCone.triangle f))
constructor
case mp C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : HasDerivedCategory C T : Triangle (DerivedCategory C) ⊢ T ∈ distinguishedTriangles → ∃ X Y f, Nonempty (T ≅ Q.mapTriangle.obj (CochainComplex.mappingCone.triangle f)) case mpr C : Type u inst✝² : Category.{v, u} C inst✝¹ : Abelian C inst✝ : HasDerivedCategory C T : Triangle (DerivedCategory C) ⊢ (∃ X Y f, Nonempty (T ≅ Q.mapTriangle.obj (CochainComplex.mappingCone.triangle f))) → T ∈ distinguishedTriangles
03b436a0c0486942
MeasureTheory.L1.setToL1_mono
Mathlib/MeasureTheory/Integral/SetToL1.lean
theorem setToL1_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C) (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁[μ] G'} (hfg : f ≤ g) : setToL1 hT f ≤ setToL1 hT g
α : Type u_1 m : MeasurableSpace α μ : Measure α G' : Type u_7 G'' : Type u_8 inst✝⁴ : NormedLatticeAddCommGroup G'' inst✝³ : NormedSpace ℝ G'' inst✝² : CompleteSpace G'' inst✝¹ : NormedLatticeAddCommGroup G' inst✝ : NormedSpace ℝ G' T : Set α → G' →L[ℝ] G'' C : ℝ hT : DominatedFinMeasAdditive μ T C hT_nonneg : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∀ (x : G'), 0 ≤ x → 0 ≤ (T s) x f g : ↥(Lp G' 1 μ) hfg : 0 ≤ g - f ⊢ 0 ≤ (setToL1 hT) g - (setToL1 hT) f
rw [← (setToL1 hT).map_sub]
α : Type u_1 m : MeasurableSpace α μ : Measure α G' : Type u_7 G'' : Type u_8 inst✝⁴ : NormedLatticeAddCommGroup G'' inst✝³ : NormedSpace ℝ G'' inst✝² : CompleteSpace G'' inst✝¹ : NormedLatticeAddCommGroup G' inst✝ : NormedSpace ℝ G' T : Set α → G' →L[ℝ] G'' C : ℝ hT : DominatedFinMeasAdditive μ T C hT_nonneg : ∀ (s : Set α), MeasurableSet s → μ s < ⊤ → ∀ (x : G'), 0 ≤ x → 0 ≤ (T s) x f g : ↥(Lp G' 1 μ) hfg : 0 ≤ g - f ⊢ 0 ≤ (setToL1 hT) (g - f)
d553f717872d4afe
separableClosure_le_iff
Mathlib/FieldTheory/PurelyInseparable/Basic.lean
theorem separableClosure_le_iff [Algebra.IsAlgebraic F E] (L : IntermediateField F E) : separableClosure F E ≤ L ↔ IsPurelyInseparable L E
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsAlgebraic F E L : IntermediateField F E ⊢ separableClosure F E ≤ L ↔ IsPurelyInseparable (↥L) E
refine ⟨fun h ↦ ?_, fun _ ↦ separableClosure_le F E L⟩
F : Type u E : Type v inst✝³ : Field F inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Algebra.IsAlgebraic F E L : IntermediateField F E h : separableClosure F E ≤ L ⊢ IsPurelyInseparable (↥L) E
3ca97f86bd963620
strictConvexOn_rpow
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
theorem strictConvexOn_rpow {p : ℝ} (hp : 1 < p) : StrictConvexOn ℝ (Ici 0) fun x : ℝ ↦ x ^ p
p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p q : 0 < y - x ⊢ (y ^ p - x ^ p) / (y - x) < p * y ^ (p - 1)
rw [div_lt_iff₀ q, ← div_lt_div_iff_of_pos_right hy', _root_.sub_div, div_self hy'.ne', ← div_rpow hx hy.le, sub_lt_comm, ← add_sub_cancel_right (x / y) 1, add_comm, add_sub_assoc, ← div_mul_eq_mul_div, mul_div_assoc, ← rpow_sub hy, sub_sub_cancel_left, rpow_neg_one, mul_assoc, ← div_eq_inv_mul, sub_eq_add_neg, ← mul_neg, ← neg_div, neg_sub, _root_.sub_div, div_self hy.ne']
p : ℝ hp : 1 < p x y z : ℝ hx : 0 ≤ x hz : 0 ≤ z hxy : x < y hyz : y < z hy : 0 < y hy' : 0 < y ^ p q : 0 < y - x ⊢ 1 + p * (x / y - 1) < (1 + (x / y - 1)) ^ p
003004303f55f1b7
NumberField.InfinitePlace.mk_eq_iff
Mathlib/NumberTheory/NumberField/Embeddings.lean
theorem mk_eq_iff {φ ψ : K →+* ℂ} : mk φ = mk ψ ↔ φ = ψ ∨ ComplexEmbedding.conjugate φ = ψ
case mp.intro.inl.h K : Type u_2 inst✝ : Field K φ ψ : K →+* ℂ h₀ : mk φ = mk ψ j : ℂ → K hiφ : Function.LeftInverse j ⇑φ ι : K ≃+* ↥φ.range := RingEquiv.ofLeftInverse hiφ hlip : LipschitzWith 1 ⇑(ψ.comp ι.symm.toRingHom) h : (↑↑(ψ.comp ι.symm.toRingHom)).toFun = ⇑φ.fieldRange.subtype ⊢ φ = ψ
ext1 x
case mp.intro.inl.h.a K : Type u_2 inst✝ : Field K φ ψ : K →+* ℂ h₀ : mk φ = mk ψ j : ℂ → K hiφ : Function.LeftInverse j ⇑φ ι : K ≃+* ↥φ.range := RingEquiv.ofLeftInverse hiφ hlip : LipschitzWith 1 ⇑(ψ.comp ι.symm.toRingHom) h : (↑↑(ψ.comp ι.symm.toRingHom)).toFun = ⇑φ.fieldRange.subtype x : K ⊢ φ x = ψ x
1d2ef4e3545a7979
CliffordAlgebra.involute_eq_of_mem_odd
Mathlib/LinearAlgebra/CliffordAlgebra/Conjugation.lean
theorem involute_eq_of_mem_odd {x : CliffordAlgebra Q} (h : x ∈ evenOdd Q 1) : involute x = -x
R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q h : x ∈ evenOdd Q 1 ⊢ involute x = -x
induction x, h using odd_induction with | ι m => exact involute_ι _ | add x y _hx _hy ihx ihy => rw [map_add, ihx, ihy, neg_add] | ι_mul_ι_mul m₁ m₂ x _hx ihx => rw [map_mul, map_mul, involute_ι, involute_ι, ihx, neg_mul_neg, mul_neg]
no goals
de256de08fdc980b
AlgebraicGeometry.spread_out_of_isGermInjective
Mathlib/AlgebraicGeometry/SpreadingOut.lean
/-- Given `S`-schemes `X Y` and points `x : X` `y : Y` over `s : S`. Suppose we have the following diagram of `S`-schemes ``` Spec 𝒪_{X, x} ⟶ X | Spec(φ) ↓ Spec 𝒪_{Y, y} ⟶ Y ``` Then the map `Spec(φ)` spreads out to an `S`-morphism on an open subscheme `U ⊆ X`, ``` Spec 𝒪_{X, x} ⟶ U ⊆ X | | Spec(φ) | ↓ ↓ Spec 𝒪_{Y, y} ⟶ Y ``` provided that `Y` is locally of finite type over `S` and `X` is "germ-injective" at `x` (e.g. when it's integral or locally noetherian). TODO: The condition on `X` is unnecessary when `Y` is locally of finite presentation. -/ @[stacks 0BX6] lemma spread_out_of_isGermInjective [LocallyOfFiniteType sY] {x : X} [X.IsGermInjectiveAt x] {y : Y} (e : sX.base x = sY.base y) (φ : Y.presheaf.stalk y ⟶ X.presheaf.stalk x) (h : sY.stalkMap y ≫ φ = S.presheaf.stalkSpecializes (Inseparable.of_eq e).specializes ≫ sX.stalkMap x) : ∃ (U : X.Opens) (hxU : x ∈ U) (f : U.toScheme ⟶ Y), Spec.map φ ≫ Y.fromSpecStalk y = U.fromSpecStalkOfMem x hxU ≫ f ∧ f ≫ sY = U.ι ≫ sX
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro X Y S : Scheme sX : X ⟶ S sY : Y ⟶ S inst✝¹ : LocallyOfFiniteType sY x : ↑↑X.toPresheafedSpace inst✝ : X.IsGermInjectiveAt x y : ↑↑Y.toPresheafedSpace e : (ConcreteCategory.hom sX.base) x = (ConcreteCategory.hom sY.base) y φ : Y.presheaf.stalk y ⟶ X.presheaf.stalk x h : Scheme.Hom.stalkMap sY y ≫ φ = S.presheaf.stalkSpecializes ⋯ ≫ Scheme.Hom.stalkMap sX x U : TopologicalSpace.Opens ↑↑S.toPresheafedSpace hU : U ∈ S.affineOpens hxU : (ConcreteCategory.hom sX.base) x ∈ ↑U hyU : (ConcreteCategory.hom sY.base) y ∈ U V : Y.Opens hV : V ∈ Y.affineOpens hyV : y ∈ ↑V iVU : ↑V ⊆ (sY ⁻¹ᵁ U).carrier this : Scheme.Hom.appLE sY U V iVU ≫ Y.presheaf.germ V y hyV ≫ φ = Scheme.Hom.app sX U ≫ X.presheaf.germ (sX ⁻¹ᵁ U) x hxU ⊢ ∃ U, ∃ (hxU : x ∈ U), ∃ f, Spec.map φ ≫ Y.fromSpecStalk y = U.fromSpecStalkOfMem x hxU ≫ f ∧ f ≫ sY = U.ι ≫ sX
obtain ⟨W, hxW, φ', i, hW, h₁, h₂⟩ := exists_lift_of_germInjective (R := Γ(S, U)) (A := Γ(Y, V)) (U := sX ⁻¹ᵁ U) (x := x) hxU (Y.presheaf.germ _ y hyV ≫ φ) (sY.appLE U V iVU) (sX.app U) (LocallyOfFiniteType.finiteType_of_affine_subset ⟨_, hU⟩ ⟨_, hV⟩ _) this
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro X Y S : Scheme sX : X ⟶ S sY : Y ⟶ S inst✝¹ : LocallyOfFiniteType sY x : ↑↑X.toPresheafedSpace inst✝ : X.IsGermInjectiveAt x y : ↑↑Y.toPresheafedSpace e : (ConcreteCategory.hom sX.base) x = (ConcreteCategory.hom sY.base) y φ : Y.presheaf.stalk y ⟶ X.presheaf.stalk x h : Scheme.Hom.stalkMap sY y ≫ φ = S.presheaf.stalkSpecializes ⋯ ≫ Scheme.Hom.stalkMap sX x U : TopologicalSpace.Opens ↑↑S.toPresheafedSpace hU : U ∈ S.affineOpens hxU : (ConcreteCategory.hom sX.base) x ∈ ↑U hyU : (ConcreteCategory.hom sY.base) y ∈ U V : Y.Opens hV : V ∈ Y.affineOpens hyV : y ∈ ↑V iVU : ↑V ⊆ (sY ⁻¹ᵁ U).carrier this : Scheme.Hom.appLE sY U V iVU ≫ Y.presheaf.germ V y hyV ≫ φ = Scheme.Hom.app sX U ≫ X.presheaf.germ (sX ⁻¹ᵁ U) x hxU W : X.Opens hxW : x ∈ W φ' : Γ(Y, V) ⟶ Γ(X, W) i : W ≤ sX ⁻¹ᵁ U hW : IsAffineOpen W h₁ : Y.presheaf.germ V y hyV ≫ φ = φ' ≫ X.presheaf.germ W x hxW h₂ : Scheme.Hom.app sX U ≫ X.presheaf.map i.hom.op = Scheme.Hom.appLE sY U V iVU ≫ φ' ⊢ ∃ U, ∃ (hxU : x ∈ U), ∃ f, Spec.map φ ≫ Y.fromSpecStalk y = U.fromSpecStalkOfMem x hxU ≫ f ∧ f ≫ sY = U.ι ≫ sX
6cace8db5fa36278
List.Sublist.of_sublist_append_right
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Sublist.lean
theorem Sublist.of_sublist_append_right (w : ∀ a, a ∈ l → a ∉ l₁) (h : l <+ l₁ ++ l₂) : l <+ l₂
case intro.intro.intro.intro α✝ : Type u_1 l₁ l₂ l₁' l₂' : List α✝ w : ∀ (a : α✝), a ∈ l₁' ++ l₂' → ¬a ∈ l₁ h₁ : l₁' <+ l₁ h₂ : l₂' <+ l₂ ⊢ l₁' ++ l₂' <+ l₂
have : l₁' = [] := by rw [eq_nil_iff_forall_not_mem] exact fun x m => w x (mem_append_left l₂' m) (h₁.mem m)
case intro.intro.intro.intro α✝ : Type u_1 l₁ l₂ l₁' l₂' : List α✝ w : ∀ (a : α✝), a ∈ l₁' ++ l₂' → ¬a ∈ l₁ h₁ : l₁' <+ l₁ h₂ : l₂' <+ l₂ this : l₁' = [] ⊢ l₁' ++ l₂' <+ l₂
a561ed959cac614f
Vector.append_eq_append_iff
Mathlib/.lake/packages/lean4/src/lean/Init/Data/Vector/Lemmas.lean
theorem append_eq_append_iff {a : Vector α n} {b : Vector α m} {c : Vector α k} {d : Vector α l} (w : k + l = n + m) : a ++ b = (c ++ d).cast w ↔ if h : n ≤ k then ∃ a' : Vector α (k - n), c = (a ++ a').cast (by omega) ∧ b = (a' ++ d).cast (by omega) else ∃ c' : Vector α (n - k), a = (c ++ c').cast (by omega) ∧ d = (c' ++ b).cast (by omega)
case mk.mk.mk.mk.mpr.isFalse.intro.intro α : Type u_1 a b c : Array α h : ¬a.size ≤ c.size c' : Vector α (a.size - c.size) ha : a = ({ toArray := c, size_toArray := ⋯ } ++ c').toArray w : c.size + (c' ++ { toArray := b, size_toArray := ⋯ }).size = a.size + b.size ⊢ (∃ a', c = a ++ a' ∧ b = a' ++ (c' ++ { toArray := b, size_toArray := ⋯ }).toArray) ∨ ∃ c'_1, a = c ++ c'_1 ∧ (c' ++ { toArray := b, size_toArray := ⋯ }).toArray = c'_1 ++ b
right
case mk.mk.mk.mk.mpr.isFalse.intro.intro.h α : Type u_1 a b c : Array α h : ¬a.size ≤ c.size c' : Vector α (a.size - c.size) ha : a = ({ toArray := c, size_toArray := ⋯ } ++ c').toArray w : c.size + (c' ++ { toArray := b, size_toArray := ⋯ }).size = a.size + b.size ⊢ ∃ c'_1, a = c ++ c'_1 ∧ (c' ++ { toArray := b, size_toArray := ⋯ }).toArray = c'_1 ++ b
6aa03c7084d30f0e
Complex.HadamardThreeLines.norm_le_interp_of_mem_verticalClosedStrip₀₁'
Mathlib/Analysis/Complex/Hadamard.lean
/-- **Hadamard three-line theorem** on `re ⁻¹' [0, 1]` (Variant in simpler terms): Let `f` be a bounded function, continuous on the closed strip `re ⁻¹' [0, 1]` and differentiable on open strip `re ⁻¹' (0, 1)`. If, for all `z.re = 0`, `‖f z‖ ≤ a` for some `a ∈ ℝ` and, similarly, for all `z.re = 1`, `‖f z‖ ≤ b` for some `b ∈ ℝ` then for all `z` in the closed strip `re ⁻¹' [0, 1]` the inequality `‖f(z)‖ ≤ a ^ (1 - z.re) * b ^ z.re` holds. -/ lemma norm_le_interp_of_mem_verticalClosedStrip₀₁' (f : ℂ → E) {z : ℂ} {a b : ℝ} (hz : z ∈ verticalClosedStrip 0 1) (hd : DiffContOnCl ℂ f (verticalStrip 0 1)) (hB : BddAbove ((norm ∘ f) '' verticalClosedStrip 0 1)) (ha : ∀ z ∈ re ⁻¹' {0}, ‖f z‖ ≤ a) (hb : ∀ z ∈ re ⁻¹' {1}, ‖f z‖ ≤ b) : ‖f z‖ ≤ a ^ (1 - z.re) * b ^ z.re
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E z : ℂ a b : ℝ hz : z ∈ verticalClosedStrip 0 1 hd : DiffContOnCl ℂ f (verticalStrip 0 1) hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1) ha : ∀ z ∈ re ⁻¹' {0}, ‖f z‖ ≤ a hb : ∀ z ∈ re ⁻¹' {1}, ‖f z‖ ≤ b this : ‖interpStrip f z‖ ≤ sSupNormIm f 0 ^ (1 - z.re) * sSupNormIm f 1 ^ z.re ⊢ sSupNormIm f 0 ^ (1 - z.re) ≤ a ^ (1 - z.re)
apply Real.rpow_le_rpow (sSupNormIm_nonneg f _) _ (sub_nonneg.mpr hz.2)
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℂ → E z : ℂ a b : ℝ hz : z ∈ verticalClosedStrip 0 1 hd : DiffContOnCl ℂ f (verticalStrip 0 1) hB : BddAbove (norm ∘ f '' verticalClosedStrip 0 1) ha : ∀ z ∈ re ⁻¹' {0}, ‖f z‖ ≤ a hb : ∀ z ∈ re ⁻¹' {1}, ‖f z‖ ≤ b this : ‖interpStrip f z‖ ≤ sSupNormIm f 0 ^ (1 - z.re) * sSupNormIm f 1 ^ z.re ⊢ sSupNormIm f 0 ≤ a
0fab8ad239caab3f
BitVec.iunfoldr_getLsbD'
Mathlib/.lake/packages/lean4/src/lean/Init/Data/BitVec/Folds.lean
theorem iunfoldr_getLsbD' {f : Fin w → α → α × Bool} (state : Nat → α) (ind : ∀(i : Fin w), (f i (state i.val)).fst = state (i.val+1)) : (∀ i : Fin w, getLsbD (iunfoldr f (state 0)).snd i.val = (f i (state i.val)).snd) ∧ (iunfoldr f (state 0)).fst = state w
case right w : Nat α : Type u_1 f : Fin w → α → α × Bool state : Nat → α ind : ∀ (i : Fin w), (f i (state ↑i)).fst = state (↑i + 1) j : Fin w s : α v : BitVec ↑j ih : ∀ (hj : ↑j ≤ w), (∀ (i : Fin ↑j), (s, v).snd.getLsbD ↑i = (f ⟨↑i, ⋯⟩ (state ↑i)).snd) ∧ (s, v).fst = state ↑j hj : ↑j + 1 ≤ w ⊢ ((f j (s, v).fst).fst, cons (f j (s, v).fst).snd (s, v).snd).fst = state (↑j + 1)
case right => simp have hj2 : j.val ≤ w := by simp rw [← ind j, ← (ih hj2).2]
no goals
2142a073bff43190
IntermediateField.mem_adjoin_iff
Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean
theorem mem_adjoin_iff (x : E) : x ∈ adjoin F S ↔ ∃ r s : MvPolynomial S F, x = MvPolynomial.aeval Subtype.val r / MvPolynomial.aeval Subtype.val s
F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E S : Set E x : E ⊢ x ∈ adjoin F S ↔ ∃ r s, x = (MvPolynomial.aeval Subtype.val) r / (MvPolynomial.aeval Subtype.val) s
rw [← mem_adjoin_range_iff, Subtype.range_coe]
no goals
366eafc3485b2f7a
Topology.IsUpperSet.monotone_to_upperTopology_continuous
Mathlib/Topology/Order/UpperLowerSetTopology.lean
lemma monotone_to_upperTopology_continuous [TopologicalSpace α] [TopologicalSpace β] [Topology.IsUpperSet α] [IsUpper β] {f : α → β} (hf : Monotone f) : Continuous f
α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : Topology.IsUpperSet α inst✝ : IsUpper β f : α → β hf : Monotone f s : Set β hs : IsOpen s ⊢ IsUpperSet (f ⁻¹' s)
exact (IsUpper.isUpperSet_of_isOpen hs).preimage hf
no goals
ee33d0fa84466562
recursion'
Mathlib/Data/Real/Pi/Irrational.lean
/-- Auxiliary for the proof that `π` is irrational. While it is most natural to give the recursive formula for `I (n + 2) θ`, as well as give the second base case of `I 1 θ`, it is in fact more convenient to give the recursive formula for `I (n + 1) θ` in terms of `I n θ` and `I (n - 1) θ` (note the natural subtraction!). Despite the usually inconvenient subtraction, this in fact allows deducing both of the above facts with significantly fewer analysis computations. In addition, note the `0 ^ n` on the right hand side - this is intentional, and again allows combining the proof of the "usual" recursion formula and the base case `I 1 θ`. -/ private lemma recursion' (n : ℕ) : I (n + 1) θ * θ ^ 2 = - (2 * 2 * ((n + 1) * (0 ^ n * cos θ))) + 2 * (n + 1) * (2 * n + 1) * I n θ - 4 * (n + 1) * n * I (n - 1) θ
case convert_2.convert_2.hg θ : ℝ n : ℕ f : ℝ → ℝ := fun x => 1 - x ^ 2 u₁ : ℝ → ℝ := fun x => f x ^ (n + 1) u₁' : ℝ → ℝ := fun x => -(2 * (↑n + 1) * x * f x ^ n) v₁ : ℝ → ℝ := fun x => sin (x * θ) v₁' : ℝ → ℝ := fun x => cos (x * θ) * θ u₂ : ℝ → ℝ := fun x => x * f x ^ n u₂' : ℝ → ℝ := fun x => f x ^ n - 2 * ↑n * x ^ 2 * f x ^ (n - 1) v₂ : ℝ → ℝ := fun x => cos (x * θ) v₂' : ℝ → ℝ := fun x => -sin (x * θ) * θ hfd : Continuous f hu₁d : Continuous u₁' hv₁d : Continuous v₁' hu₂d : Continuous u₂' hv₂d : Continuous v₂' hu₁_eval_one : u₁ 1 = 0 hu₁_eval_neg_one : u₁ (-1) = 0 t : u₂ 1 * v₂ 1 - u₂ (-1) * v₂ (-1) = 2 * (0 ^ n * cos θ) hf : ∀ (x : ℝ), HasDerivAt f (-2 * x) x hu₁ : ∀ (x : ℝ), HasDerivAt u₁ (u₁' x) x hv₁ : ∀ (x : ℝ), HasDerivAt v₁ (v₁' x) x hu₂ : ∀ (x : ℝ), HasDerivAt u₂ (u₂' x) x hv₂ : ∀ (x : ℝ), HasDerivAt v₂ (v₂' x) x this✝ : ∀ (x : ℝ), u₂' x = (2 * ↑n + 1) * f x ^ n - 2 * ↑n * f x ^ (n - 1) this : Continuous v₂ ⊢ IntervalIntegrable (fun x => 2 * ↑n * (f x ^ (n - 1) * v₂ x)) volume (-1) 1
exact Continuous.intervalIntegrable (by fun_prop) _ _
no goals
834ac76d1ec60c71
AlgebraicGeometry.Scheme.ofRestrict_appIso
Mathlib/AlgebraicGeometry/OpenImmersion.lean
@[simp] lemma Scheme.ofRestrict_appIso (U) : (X.ofRestrict h).appIso U = Iso.refl _
case w U✝ : TopCat X : Scheme f : U✝ ⟶ TopCat.of ↑↑X.toPresheafedSpace h : IsOpenEmbedding ⇑(ConcreteCategory.hom f) U : (X.restrict h).Opens ⊢ (Hom.appIso (X.ofRestrict h) U).hom = (Iso.refl Γ(X, X.ofRestrict h ''ᵁ U)).hom
simp only [restrict_presheaf_obj, Hom.appIso_hom', ofRestrict_appLE, homOfLE_refl, op_id, CategoryTheory.Functor.map_id, Iso.refl_hom]
no goals
7473df1570c2c905
Array.size_eraseIdxIfInBounds
Mathlib/.lake/packages/batteries/Batteries/Data/Array/Lemmas.lean
theorem size_eraseIdxIfInBounds (a : Array α) (i : Nat) : (a.eraseIdxIfInBounds i).size = if i < a.size then a.size-1 else a.size
case isTrue α : Type u_1 a : Array α i : Nat h✝ : i < a.size ⊢ (a.eraseIdx i h✝).size = a.size - 1 case isFalse α : Type u_1 a : Array α i : Nat h✝ : ¬i < a.size ⊢ a.size = a.size
simp
case isFalse α : Type u_1 a : Array α i : Nat h✝ : ¬i < a.size ⊢ a.size = a.size
c70fb068dccb7279
DFinsupp.neLocus_self_sub_left
Mathlib/Data/DFinsupp/NeLocus.lean
theorem neLocus_self_sub_left : neLocus (f - g) f = g.support
α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f g : Π₀ (a : α), N a ⊢ (f - g).neLocus f = g.support
rw [neLocus_comm, neLocus_self_sub_right]
no goals
552fe3903be4c087
MeasureTheory.AEStronglyMeasurable.piecewise
Mathlib/MeasureTheory/Function/StronglyMeasurable/AEStronglyMeasurable.lean
theorem piecewise {s : Set α} [DecidablePred (· ∈ s)] (hs : MeasurableSet s) (hf : AEStronglyMeasurable f (μ.restrict s)) (hg : AEStronglyMeasurable g (μ.restrict sᶜ)) : AEStronglyMeasurable (s.piecewise f g) μ
case h α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace β m₀ : MeasurableSpace α μ : Measure α f g : α → β s : Set α inst✝ : DecidablePred fun x => x ∈ s hs : MeasurableSet s hf : AEStronglyMeasurable f (μ.restrict s) hg : AEStronglyMeasurable g (μ.restrict sᶜ) h : ∀ᵐ (x : α) ∂μ, x ∈ sᶜ → g x = AEStronglyMeasurable.mk g hg x x : α hx : x ∈ sᶜ → g x = AEStronglyMeasurable.mk g hg x ⊢ x ∈ sᶜ → s.piecewise f g x = s.piecewise (AEStronglyMeasurable.mk f hf) (AEStronglyMeasurable.mk g hg) x
intro hx_mem
case h α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace β m₀ : MeasurableSpace α μ : Measure α f g : α → β s : Set α inst✝ : DecidablePred fun x => x ∈ s hs : MeasurableSet s hf : AEStronglyMeasurable f (μ.restrict s) hg : AEStronglyMeasurable g (μ.restrict sᶜ) h : ∀ᵐ (x : α) ∂μ, x ∈ sᶜ → g x = AEStronglyMeasurable.mk g hg x x : α hx : x ∈ sᶜ → g x = AEStronglyMeasurable.mk g hg x hx_mem : x ∈ sᶜ ⊢ s.piecewise f g x = s.piecewise (AEStronglyMeasurable.mk f hf) (AEStronglyMeasurable.mk g hg) x
3fd4cff7b1ce1750
ProbabilityTheory.condExp_prod_ae_eq_integral_condDistrib'
Mathlib/Probability/Kernel/CondDistrib.lean
theorem condExp_prod_ae_eq_integral_condDistrib' [NormedSpace ℝ F] [CompleteSpace F] (hX : Measurable X) (hY : AEMeasurable Y μ) (hf_int : Integrable f (μ.map fun a => (X a, Y a))) : μ[fun a => f (X a, Y a)|mβ.comap X] =ᵐ[μ] fun a => ∫ y, f (X a,y) ∂condDistrib Y X μ (X a)
case refine_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : MeasurableSpace Ω inst✝⁵ : StandardBorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y μ hf_int : Integrable f (Measure.map (fun a => (X a, Y a)) μ) hf_int' : Integrable (fun a => f (X a, Y a)) μ t : Set β ht : MeasurableSet t a✝ : μ (X ⁻¹' t) < ⊤ ⊢ ∫ (y : β), ∫ (y_1 : Ω), f (y, y_1) ∂(condDistrib Y X μ) y ∂Measure.map X (μ.restrict (X ⁻¹' t)) = ∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ
rw [← Measure.restrict_map hX ht, ← Measure.fst_map_prod_mk₀ hY, condDistrib, Measure.setIntegral_condKernel_univ_right ht hf_int.integrableOn, setIntegral_map (ht.prod MeasurableSet.univ) hf_int.1 (hX.aemeasurable.prod_mk hY), mk_preimage_prod, preimage_univ, inter_univ]
no goals
824ee395dfccb749
CategoryTheory.isUniversalColimit_extendCofan
Mathlib/CategoryTheory/Limits/VanKampen.lean
theorem isUniversalColimit_extendCofan {n : ℕ} (f : Fin (n + 1) → C) {c₁ : Cofan fun i : Fin n ↦ f i.succ} {c₂ : BinaryCofan (f 0) c₁.pt} (t₁ : IsUniversalColimit c₁) (t₂ : IsUniversalColimit c₂) [∀ {Z} (i : Z ⟶ c₂.pt), HasPullback c₂.inr i] : IsUniversalColimit (extendCofan c₁ c₂)
case refine_3 C : Type u inst✝¹ : Category.{v, u} C n : ℕ f : Fin (n + 1) → C c₁ : Cofan fun i => f i.succ c₂ : BinaryCofan (f 0) c₁.pt t₁ : IsUniversalColimit c₁ t₂ : IsUniversalColimit c₂ inst✝ : ∀ {Z : C} (i : Z ⟶ c₂.pt), HasPullback c₂.inr i F : Discrete (Fin (n + 1)) ⥤ C c : Cocone F α : F ⟶ Discrete.functor f i : c.pt ⟶ (extendCofan c₁ c₂).pt e : α ≫ (extendCofan c₁ c₂).ι = c.ι ≫ (Functor.const (Discrete (Fin (n + 1)))).map i hα : NatTrans.Equifibered α H : ∀ (j : Discrete (Fin (n + 1))), IsPullback (c.ι.app j) (α.app j) i ((extendCofan c₁ c₂).ι.app j) F' : Fin (n + 1) → C := F.obj ∘ Discrete.mk this : F = Discrete.functor F' j : Discrete (Fin n) ⊢ IsPullback ((Cofan.mk (pullback c₂.inr i) fun j => pullback.lift (α.app { as := j.succ } ≫ c₁.inj j) (c.ι.app { as := j.succ }) ⋯).ι.app j) ((Discrete.natTrans fun i => α.app { as := i.as.succ }).app j) (pullback.fst c₂.inr i) (c₁.ι.app j)
simp only [pair_obj_right, Functor.const_obj_obj, Discrete.functor_obj, id_eq, extendCofan_pt, eq_mpr_eq_cast, Cofan.mk_pt, Cofan.mk_ι_app, Discrete.natTrans_app]
case refine_3 C : Type u inst✝¹ : Category.{v, u} C n : ℕ f : Fin (n + 1) → C c₁ : Cofan fun i => f i.succ c₂ : BinaryCofan (f 0) c₁.pt t₁ : IsUniversalColimit c₁ t₂ : IsUniversalColimit c₂ inst✝ : ∀ {Z : C} (i : Z ⟶ c₂.pt), HasPullback c₂.inr i F : Discrete (Fin (n + 1)) ⥤ C c : Cocone F α : F ⟶ Discrete.functor f i : c.pt ⟶ (extendCofan c₁ c₂).pt e : α ≫ (extendCofan c₁ c₂).ι = c.ι ≫ (Functor.const (Discrete (Fin (n + 1)))).map i hα : NatTrans.Equifibered α H : ∀ (j : Discrete (Fin (n + 1))), IsPullback (c.ι.app j) (α.app j) i ((extendCofan c₁ c₂).ι.app j) F' : Fin (n + 1) → C := F.obj ∘ Discrete.mk this : F = Discrete.functor F' j : Discrete (Fin n) ⊢ IsPullback (pullback.lift (α.app { as := j.as.succ } ≫ c₁.inj j.as) (c.ι.app { as := j.as.succ }) ⋯) (α.app { as := j.as.succ }) (pullback.fst c₂.inr i) (c₁.ι.app j)
26415e6516008f86
Ordinal.preOmega_natCast
Mathlib/SetTheory/Cardinal/Aleph.lean
theorem preOmega_natCast (n : ℕ) : preOmega n = n
case succ n : ℕ IH : preOmega ↑n = ↑n ⊢ preOmega ↑(n + 1) = ↑(n + 1)
apply (le_preOmega_self _).antisymm'
case succ n : ℕ IH : preOmega ↑n = ↑n ⊢ preOmega ↑(n + 1) ≤ ↑(n + 1)
5ffb6949c81c19a7
Std.DHashMap.Internal.List.getValueCast?_insertList_of_mem
Mathlib/.lake/packages/lean4/src/lean/Std/Data/DHashMap/Internal/List/Associative.lean
theorem getValueCast?_insertList_of_mem [BEq α] [LawfulBEq α] {l toInsert : List ((a : α) × β a)} {k k' : α} (k_beq : k == k') {v : β k} (distinct_l : DistinctKeys l) (distinct_toInsert : toInsert.Pairwise (fun a b => (a.1 == b.1) = false)) (mem : ⟨k, v⟩ ∈ toInsert) : getValueCast? k' (insertList l toInsert) = some (cast (by congr; exact LawfulBEq.eq_of_beq k_beq) v)
case e_a α : Type u β : α → Type v γ : α → Type w inst✝¹ : BEq α inst✝ : LawfulBEq α l toInsert : List ((a : α) × β a) k k' : α k_beq : (k == k') = true v : β k distinct_l : DistinctKeys l distinct_toInsert : List.Pairwise (fun a b => (a.fst == b.fst) = false) toInsert mem : ⟨k, v⟩ ∈ toInsert ⊢ k = k'
exact LawfulBEq.eq_of_beq k_beq
no goals
82c18001be4198ba
Traversable.toList_spec
Mathlib/Control/Fold.lean
theorem toList_spec (xs : t α) : toList xs = FreeMonoid.toList (foldMap FreeMonoid.of xs) := Eq.symm <| calc FreeMonoid.toList (foldMap FreeMonoid.of xs) = FreeMonoid.toList (foldMap FreeMonoid.of xs).reverse.reverse
α : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ (unop ((Foldl.ofFreeMonoid (flip cons)) (foldMap FreeMonoid.of xs)) []).reverse = toList xs
rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
α : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ (unop (foldMap (⇑(Foldl.ofFreeMonoid (flip cons)) ∘ FreeMonoid.of) xs) []).reverse = toList xs
9cc7a5054b1c54eb
ProbabilityTheory.IndepFun.variance_add
Mathlib/Probability/Variance.lean
theorem IndepFun.variance_add [IsProbabilityMeasure μ] {X Y : Ω → ℝ} (hX : MemLp X 2 μ) (hY : MemLp Y 2 μ) (h : IndepFun X Y μ) : variance (X + Y) μ = variance X μ + variance Y μ := calc variance (X + Y) μ = μ[fun a => X a ^ 2 + Y a ^ 2 + 2 * X a * Y a] - μ[X + Y] ^ 2
case hg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ X Y : Ω → ℝ hX : MemLp X 2 μ hY : MemLp Y 2 μ h : IndepFun X Y μ ⊢ Integrable (fun a => Y a ^ 2) μ
exact hY.integrable_sq
no goals
6996a4817b022b25
Finset.mulEnergy_univ_left
Mathlib/Combinatorics/Additive/Energy.lean
@[to_additive (attr := simp)] lemma mulEnergy_univ_left : Eₘ[univ, t] = Fintype.card α * t.card ^ 2
α : Type u_1 inst✝² : DecidableEq α inst✝¹ : CommGroup α inst✝ : Fintype α t : Finset α f : α × α × α → (α × α) × α × α := fun x => ((x.1 * x.2.2, x.1 * x.2.1), x.2) ⊢ Set.InjOn f ↑(univ ×ˢ t ×ˢ t)
rintro ⟨a₁, b₁, c₁⟩ _ ⟨a₂, b₂, c₂⟩ h₂ h
case mk.mk.mk.mk α : Type u_1 inst✝² : DecidableEq α inst✝¹ : CommGroup α inst✝ : Fintype α t : Finset α f : α × α × α → (α × α) × α × α := fun x => ((x.1 * x.2.2, x.1 * x.2.1), x.2) a₁ b₁ c₁ : α a✝ : (a₁, b₁, c₁) ∈ ↑(univ ×ˢ t ×ˢ t) a₂ b₂ c₂ : α h₂ : (a₂, b₂, c₂) ∈ ↑(univ ×ˢ t ×ˢ t) h : f (a₁, b₁, c₁) = f (a₂, b₂, c₂) ⊢ (a₁, b₁, c₁) = (a₂, b₂, c₂)
744bbda61960c041
Nat.succ_dvd_centralBinom
Mathlib/Data/Nat/Choose/Central.lean
theorem succ_dvd_centralBinom (n : ℕ) : n + 1 ∣ n.centralBinom
n : ℕ h_s : (n + 1).Coprime (2 * n + 1) ⊢ n + 1 ∣ (2 * n + 1) * n.centralBinom
apply Nat.dvd_of_mul_dvd_mul_left zero_lt_two
n : ℕ h_s : (n + 1).Coprime (2 * n + 1) ⊢ 2 * (n + 1) ∣ 2 * ((2 * n + 1) * n.centralBinom)
fb1b90bbcc5f1bf9
LinearMap.trace_one
Mathlib/LinearAlgebra/Trace.lean
theorem trace_one : trace R M 1 = (finrank R M : R)
R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Module.Finite R M ⊢ (trace R M) 1 = ↑(finrank R M)
cases subsingleton_or_nontrivial R
case inl R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Module.Finite R M h✝ : Subsingleton R ⊢ (trace R M) 1 = ↑(finrank R M) case inr R : Type u_1 inst✝⁴ : CommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Free R M inst✝ : Module.Finite R M h✝ : Nontrivial R ⊢ (trace R M) 1 = ↑(finrank R M)
4959d10d80e34ef9
Equiv.Perm.signAux_swap_zero_one'
Mathlib/GroupTheory/Perm/Sign.lean
theorem signAux_swap_zero_one' (n : ℕ) : signAux (swap (0 : Fin (n + 2)) 1) = -1 := show _ = ∏ x ∈ {(⟨1, 0⟩ : Σ _ : Fin (n + 2), Fin (n + 2))}, if (Equiv.swap 0 1) x.1 ≤ swap 0 1 x.2 then (-1 : ℤˣ) else 1 by refine Eq.symm (prod_subset (fun ⟨x₁, x₂⟩ => by simp +contextual [mem_finPairsLT, Fin.one_pos]) fun a ha₁ ha₂ => ?_) rcases a with ⟨a₁, a₂⟩ replace ha₁ : a₂ < a₁ := mem_finPairsLT.1 ha₁ dsimp only rcases a₁.zero_le.eq_or_lt with (rfl | H) · exact absurd a₂.zero_le ha₁.not_le rcases a₂.zero_le.eq_or_lt with (rfl | H') · simp only [and_true, eq_self_iff_true, heq_iff_eq, mem_singleton, Sigma.mk.inj_iff] at ha₂ have : 1 < a₁ := lt_of_le_of_ne (Nat.succ_le_of_lt ha₁) (Ne.symm (by intro h; apply ha₂; simp [h])) have h01 : Equiv.swap (0 : Fin (n + 2)) 1 0 = 1
case mk n : ℕ a₁ a₂ : Fin (n + 2) ha₂ : ⟨a₁, a₂⟩ ∉ {⟨1, 0⟩} ha₁ : a₂ < a₁ ⊢ (if (swap 0 1) a₁ ≤ (swap 0 1) a₂ then -1 else 1) = 1
rcases a₁.zero_le.eq_or_lt with (rfl | H)
case mk.inl n : ℕ a₂ : Fin (n + 2) ha₂ : ⟨0, a₂⟩ ∉ {⟨1, 0⟩} ha₁ : a₂ < 0 ⊢ (if (swap 0 1) 0 ≤ (swap 0 1) a₂ then -1 else 1) = 1 case mk.inr n : ℕ a₁ a₂ : Fin (n + 2) ha₂ : ⟨a₁, a₂⟩ ∉ {⟨1, 0⟩} ha₁ : a₂ < a₁ H : 0 < a₁ ⊢ (if (swap 0 1) a₁ ≤ (swap 0 1) a₂ then -1 else 1) = 1
31014fc4c4be8869
abs_sub_round_eq_min
Mathlib/Algebra/Order/Round.lean
theorem abs_sub_round_eq_min (x : α) : |x - round x| = min (fract x) (1 - fract x)
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α hx : fract x ≥ 1 - fract x ⊢ 0 < fract x
replace hx : 0 < fract x + fract x := lt_of_lt_of_le zero_lt_one (tsub_le_iff_left.mp hx)
α : Type u_2 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α x : α hx : 0 < fract x + fract x ⊢ 0 < fract x
04106663884a2f2b
Module.End.eigenspace_restrict_le_eigenspace
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
theorem eigenspace_restrict_le_eigenspace (f : End R M) {p : Submodule R M} (hfp : ∀ x ∈ p, f x ∈ p) (μ : R) : (eigenspace (f.restrict hfp) μ).map p.subtype ≤ f.eigenspace μ
case intro.intro R : Type v M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : End R M p : Submodule R M hfp : ∀ x ∈ p, f x ∈ p μ : R x : ↥p hx : x ∈ ↑(eigenspace (LinearMap.restrict f hfp) μ) ⊢ p.subtype x ∈ f.eigenspace μ
simp only [SetLike.mem_coe, mem_eigenspace_iff, LinearMap.restrict_apply] at hx ⊢
case intro.intro R : Type v M : Type w inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : End R M p : Submodule R M hfp : ∀ x ∈ p, f x ∈ p μ : R x : ↥p hx : ⟨f ↑x, ⋯⟩ = μ • x ⊢ f (p.subtype x) = μ • p.subtype x
b2a6d59fdcc08e4e
IsFractional.mul
Mathlib/RingTheory/FractionalIdeal/Basic.lean
theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I → IsFractional S J → IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ · intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm · intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩
case refine_1 R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) b : P hb : b ∈ I * J ⊢ ∀ m ∈ I, ∀ n ∈ J, IsInteger R ((aI * aJ) • (m * n))
intro m hm n hn
case refine_1 R : Type u_1 inst✝² : CommRing R S : Submonoid R P : Type u_2 inst✝¹ : CommRing P inst✝ : Algebra R P I J : Submodule R P aI : R haI : aI ∈ S hI : ∀ b ∈ I, IsInteger R (aI • b) aJ : R haJ : aJ ∈ S hJ : ∀ b ∈ J, IsInteger R (aJ • b) b : P hb : b ∈ I * J m : P hm : m ∈ I n : P hn : n ∈ J ⊢ IsInteger R ((aI * aJ) • (m * n))
003413a5af38d292
AlgebraicGeometry.affineAnd_isLocal
Mathlib/AlgebraicGeometry/Morphisms/AffineAnd.lean
/-- `affineAnd P` is local if `P` is local on the (algebraic) source. -/ lemma affineAnd_isLocal (hPi : RingHom.RespectsIso Q) (hQl : RingHom.LocalizationAwayPreserves Q) (hQs : RingHom.OfLocalizationSpan Q) : (affineAnd Q).IsLocal where respectsIso := affineAnd_respectsIso hPi to_basicOpen {X Y _} f r := fun ⟨hX, hf⟩ ↦ by simp only [Opens.map_top] at hf constructor · simp only [Scheme.preimage_basicOpen, Opens.map_top] exact (isAffineOpen_top X).basicOpen _ · dsimp only rw [morphismRestrict_appTop, CommRingCat.hom_comp, hPi.cancel_right_isIso] -- Not sure why the `show` fixes the following `rw` complaining about "motive is incorrect" show Q (Scheme.Hom.app f ((Y.basicOpen r).ι ''ᵁ ⊤)).hom rw [Scheme.Opens.ι_image_top] rw [(isAffineOpen_top Y).app_basicOpen_eq_away_map f (isAffineOpen_top X), CommRingCat.hom_comp, hPi.cancel_right_isIso, ← Scheme.Hom.appTop] dsimp only [Opens.map_top] haveI := (isAffineOpen_top X).isLocalization_basicOpen (f.appTop r) apply hQl exact hf of_basicOpenCover {X Y _} f s hs hf
Q : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hPi : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => Q hQl : RingHom.LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => Q hQs : RingHom.OfLocalizationSpan fun {R S} [CommRing R] [CommRing S] => Q X Y : Scheme x✝ : IsAffine Y f : X ⟶ Y s : Finset ↑Γ(Y, ⊤) hs : Ideal.span ↑s = ⊤ hf : ∀ (r : { x // x ∈ s }), IsAffine ↑(f ⁻¹ᵁ Y.basicOpen ↑r) ∧ Q (CommRingCat.Hom.hom (Scheme.Hom.appTop (f ∣_ Y.basicOpen ↑r))) this : IsAffine X ⊢ affineAnd (fun {R S} [CommRing R] [CommRing S] => Q) f
refine ⟨inferInstance, hQs.ofIsLocalization' hPi (f.appTop).hom s hs fun a ↦ ?_⟩
Q : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop hPi : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => Q hQl : RingHom.LocalizationAwayPreserves fun {R S} [CommRing R] [CommRing S] => Q hQs : RingHom.OfLocalizationSpan fun {R S} [CommRing R] [CommRing S] => Q X Y : Scheme x✝ : IsAffine Y f : X ⟶ Y s : Finset ↑Γ(Y, ⊤) hs : Ideal.span ↑s = ⊤ hf : ∀ (r : { x // x ∈ s }), IsAffine ↑(f ⁻¹ᵁ Y.basicOpen ↑r) ∧ Q (CommRingCat.Hom.hom (Scheme.Hom.appTop (f ∣_ Y.basicOpen ↑r))) this : IsAffine X a : ↑↑s ⊢ ∃ Rᵣ Sᵣ x x_1 x_2 x_3, ∃ (x_4 : IsLocalization.Away (↑a) Rᵣ) (x_5 : IsLocalization.Away ((CommRingCat.Hom.hom (Scheme.Hom.appTop f)) ↑a) Sᵣ), Q (IsLocalization.Away.map Rᵣ Sᵣ (CommRingCat.Hom.hom (Scheme.Hom.appTop f)) ↑a)
2b5f5ef2a8aa609c
List.pairwise_filter
Mathlib/.lake/packages/lean4/src/lean/Init/Data/List/Pairwise.lean
theorem pairwise_filter {p : α → Prop} [DecidablePred p] {l : List α} : Pairwise R (filter p l) ↔ Pairwise (fun x y => p x → p y → R x y) l
α : Type u_1 R : α → α → Prop p : α → Prop inst✝ : DecidablePred p l : List α ⊢ Pairwise R (filter (fun b => decide (p b)) l) ↔ Pairwise (fun x y => p x → p y → R x y) l
rw [← filterMap_eq_filter, pairwise_filterMap]
α : Type u_1 R : α → α → Prop p : α → Prop inst✝ : DecidablePred p l : List α ⊢ Pairwise (fun a a' => ∀ (b : α), b ∈ Option.guard (fun x => decide (p x) = true) a → ∀ (b' : α), b' ∈ Option.guard (fun x => decide (p x) = true) a' → R b b') l ↔ Pairwise (fun x y => p x → p y → R x y) l
7ca88e024fd3a25b
SetTheory.PGame.insertRight_numeric
Mathlib/SetTheory/Surreal/Basic.lean
theorem insertRight_numeric {x x' : PGame} (x_num : x.Numeric) (x'_num : x'.Numeric) (h : x ≤ x') : (insertRight x x').Numeric
x x' : PGame x_num : x.Numeric x'_num : x'.Numeric h : x ≤ x' ⊢ (-(-x).insertLeft (-x')).Numeric
apply Numeric.neg
case x x x' : PGame x_num : x.Numeric x'_num : x'.Numeric h : x ≤ x' ⊢ ((-x).insertLeft (-x')).Numeric
3fe52f8d55a21b54
SimpleGraph.Walk.concat_inj
Mathlib/Combinatorics/SimpleGraph/Walk.lean
theorem concat_inj {u v v' w : V} {p : G.Walk u v} {h : G.Adj v w} {p' : G.Walk u v'} {h' : G.Adj v' w} (he : p.concat h = p'.concat h') : ∃ hv : v = v', p.copy rfl hv = p'
case nil.cons.intro V : Type u G : SimpleGraph V u v v' w : V h' : G.Adj v' w u✝ : V h h✝ : G.Adj u✝ w p✝ : G.Walk w v' he : nil = p✝.concat h' ⊢ False
exact concat_ne_nil _ _ he.symm
no goals
6aa77e2092977f18
contDiffWithinAt_localInvariantProp_of_le
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
theorem contDiffWithinAt_localInvariantProp_of_le (n m : WithTop ℕ∞) (hmn : m ≤ n) : (contDiffGroupoid n I).LocalInvariantProp (contDiffGroupoid n I') (ContDiffWithinAtProp I I' m) where is_local {s x u f} u_open xu
case convert_2 𝕜 : Type u_1 inst✝⁶ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E H : Type u_3 inst✝³ : TopologicalSpace H I : ModelWithCorners 𝕜 E H E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' n m : WithTop ℕ∞ hmn : m ≤ n s : Set H x : H f : H → H' e : PartialHomeomorph H H he : e ∈ contDiffGroupoid n I hx : x ∈ e.source h : ContDiffWithinAt 𝕜 m (↑I' ∘ f ∘ ↑I.symm) (↑I.symm ⁻¹' s ∩ range ↑I) ((↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I (↑e x))) this✝¹ : ↑I x = (↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I (↑e x)) this✝ : ↑I (↑e x) ∈ ↑I.symm ⁻¹' e.target ∩ range ↑I this : ContDiffWithinAt 𝕜 n (↑I ∘ ↑e.symm ∘ ↑I.symm) (↑I.symm ⁻¹' e.target ∩ range ↑I) (↑I (↑e x)) ⊢ ↑I.symm ⁻¹' e.target ∩ (↑I.symm ⁻¹' (↑e.symm ⁻¹' s) ∩ range ↑I) ⊆ ↑I.symm ⁻¹' e.target ∩ range ↑I ∩ ↑I ∘ ↑e.symm ∘ ↑I.symm ⁻¹' (↑I.symm ⁻¹' s ∩ range ↑I)
mfld_set_tac
no goals
841928255da4a913
MeasureTheory.Measure.eq_withDensity_rnDeriv
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
theorem eq_withDensity_rnDeriv {s : Measure α} {f : α → ℝ≥0∞} (hf : Measurable f) (hs : s ⟂ₘ ν) (hadd : μ = s + ν.withDensity f) : ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
α : Type u_1 m : MeasurableSpace α μ ν s : Measure α f : α → ℝ≥0∞ hf : Measurable f hs : s ⟂ₘ ν hadd : μ = s + ν.withDensity f ⊢ ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
have : HaveLebesgueDecomposition μ ν := ⟨⟨⟨s, f⟩, hf, hs, hadd⟩⟩
α : Type u_1 m : MeasurableSpace α μ ν s : Measure α f : α → ℝ≥0∞ hf : Measurable f hs : s ⟂ₘ ν hadd : μ = s + ν.withDensity f this : μ.HaveLebesgueDecomposition ν ⊢ ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
fc3f06ec8038d87c
MeasureTheory.continuous_of_dominated
Mathlib/MeasureTheory/Integral/Bochner.lean
theorem continuous_of_dominated {F : X → α → G} {bound : α → ℝ} (hF_meas : ∀ x, AEStronglyMeasurable (F x) μ) (h_bound : ∀ x, ∀ᵐ a ∂μ, ‖F x a‖ ≤ bound a) (bound_integrable : Integrable bound μ) (h_cont : ∀ᵐ a ∂μ, Continuous fun x => F x a) : Continuous fun x => ∫ a, F x a ∂μ
case pos α : Type u_1 G : Type u_5 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace ℝ G m : MeasurableSpace α μ : Measure α X : Type u_6 inst✝¹ : TopologicalSpace X inst✝ : FirstCountableTopology X F : X → α → G bound : α → ℝ hF_meas : ∀ (x : X), AEStronglyMeasurable (F x) μ h_bound : ∀ (x : X), ∀ᵐ (a : α) ∂μ, ‖F x a‖ ≤ bound a bound_integrable : Integrable bound μ h_cont : ∀ᵐ (a : α) ∂μ, Continuous fun x => F x a hG : CompleteSpace G ⊢ Continuous fun x => ∫ (a : α), F x a ∂μ
simp only [integral, hG, L1.integral]
case pos α : Type u_1 G : Type u_5 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace ℝ G m : MeasurableSpace α μ : Measure α X : Type u_6 inst✝¹ : TopologicalSpace X inst✝ : FirstCountableTopology X F : X → α → G bound : α → ℝ hF_meas : ∀ (x : X), AEStronglyMeasurable (F x) μ h_bound : ∀ (x : X), ∀ᵐ (a : α) ∂μ, ‖F x a‖ ≤ bound a bound_integrable : Integrable bound μ h_cont : ∀ᵐ (a : α) ∂μ, Continuous fun x => F x a hG : CompleteSpace G ⊢ Continuous fun x => if h : True then if hf : Integrable (fun a => F x a) μ then L1.integralCLM (Integrable.toL1 (fun a => F x a) hf) else 0 else 0
4a2462339b98c2fb
Localization.smul_mk
Mathlib/GroupTheory/MonoidLocalization/Basic.lean
theorem smul_mk [SMul R M] [IsScalarTower R M M] (c : R) (a b) : c • (mk a b : Localization S) = mk (c • a) b
M : Type u_1 inst✝² : CommMonoid M S : Submonoid M R : Type u_4 inst✝¹ : SMul R M inst✝ : IsScalarTower R M M c : R a : M b : ↥S ⊢ (c • 1) • a /ₒ (b * 1) = c • a /ₒ b
rw [smul_assoc, one_smul, mul_one]
no goals
f28c11ec5885a209
isZero_Ext_succ_of_projective
Mathlib/CategoryTheory/Abelian/Ext.lean
/-- If `X : C` is projective and `n : ℕ`, then `Ext^(n + 1) X Y ≅ 0` for any `Y`. -/ lemma isZero_Ext_succ_of_projective (X Y : C) [Projective X] (n : ℕ) : IsZero (((Ext R C (n + 1)).obj (Opposite.op X)).obj Y)
case hf.h R : Type u_1 inst✝⁵ : Ring R C : Type u_2 inst✝⁴ : Category.{u_3, u_2} C inst✝³ : Abelian C inst✝² : Linear R C inst✝¹ : EnoughProjectives C X Y : C inst✝ : Projective X n : ℕ ⊢ (ModuleCat.Hom.hom (𝟙 (((linearYoneda R C).obj Y).obj (Opposite.op (((ChainComplex.single₀ C).obj X).X (n + 1)))))) 0 = (ModuleCat.Hom.hom 0) 0
rfl
no goals
40abdca1318b58b3
eVariationOn.add_point
Mathlib/Topology/EMetricSpace/BoundedVariation.lean
theorem add_point (f : α → E) {s : Set α} {x : α} (hx : x ∈ s) (u : ℕ → α) (hu : Monotone u) (us : ∀ i, u i ∈ s) (n : ℕ) : ∃ (v : ℕ → α) (m : ℕ), Monotone v ∧ (∀ i, v i ∈ s) ∧ x ∈ v '' Iio m ∧ (∑ i ∈ Finset.range n, edist (f (u (i + 1))) (f (u i))) ≤ ∑ j ∈ Finset.range m, edist (f (v (j + 1))) (f (v j))
case inr.refine_2 α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N ≤ n, x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w ⊢ ∑ i ∈ Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j ∈ Finset.range (n + 1), edist (f (w (j + 1))) (f (w j))
rcases eq_or_lt_of_le (zero_le N) with (Npos | Npos)
case inr.refine_2.inl α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N ≤ n, x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 = N ⊢ ∑ i ∈ Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j ∈ Finset.range (n + 1), edist (f (w (j + 1))) (f (w j)) case inr.refine_2.inr α : Type u_1 inst✝¹ : LinearOrder α E : Type u_2 inst✝ : PseudoEMetricSpace E f : α → E s : Set α x : α hx : x ∈ s u : ℕ → α hu : Monotone u us : ∀ (i : ℕ), u i ∈ s n : ℕ h : x < u n exists_N : ∃ N ≤ n, x < u N N : ℕ := Nat.find exists_N hN : N ≤ n ∧ x < u N w : ℕ → α := fun i => if i < N then u i else if i = N then x else u (i - 1) ws : ∀ (i : ℕ), w i ∈ s hw : Monotone w Npos : 0 < N ⊢ ∑ i ∈ Finset.range n, edist (f (u (i + 1))) (f (u i)) ≤ ∑ j ∈ Finset.range (n + 1), edist (f (w (j + 1))) (f (w j))
760e94573f7a043d
Homotopy.nullHomotopicMap_comp
Mathlib/Algebra/Homology/Homotopy.lean
theorem nullHomotopicMap_comp (hom : ∀ i j, C.X i ⟶ D.X j) (g : D ⟶ E) : nullHomotopicMap hom ≫ g = nullHomotopicMap fun i j => hom i j ≫ g.f j
case h ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → C.X i ⟶ D.X j g : D ⟶ E n : ι ⊢ (C.dFrom n ≫ hom (c.next n) n + hom n (c.prev n) ≫ D.dTo n) ≫ g.f n = C.dFrom n ≫ hom (c.next n) n ≫ g.f n + (hom n (c.prev n) ≫ g.f (c.prev n)) ≫ E.dTo n
simp only [Preadditive.add_comp, assoc, g.comm]
no goals
08696897e099d0bd
ContinuousMultilinearMap.hasFTaylorSeriesUpTo_iteratedFDeriv
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
theorem hasFTaylorSeriesUpTo_iteratedFDeriv : HasFTaylorSeriesUpTo ⊤ f (fun v n ↦ f.iteratedFDeriv n v)
𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 F : Type v inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝² : (i : ι) → NormedAddCommGroup (E i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (E i) inst✝ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F ⊢ HasFTaylorSeriesUpTo ⊤ ⇑f fun v n => f.iteratedFDeriv n v
constructor
case zero_eq 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 F : Type v inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝² : (i : ι) → NormedAddCommGroup (E i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (E i) inst✝ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F ⊢ ∀ (x : (i : ι) → E i), (f.iteratedFDeriv 0 x).curry0 = f x case fderiv 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 F : Type v inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝² : (i : ι) → NormedAddCommGroup (E i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (E i) inst✝ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F ⊢ ∀ (m : ℕ), ↑m < ⊤ → ∀ (x : (i : ι) → E i), HasFDerivAt (fun y => f.iteratedFDeriv m y) (f.iteratedFDeriv m.succ x).curryLeft x case cont 𝕜 : Type u_1 inst✝⁵ : NontriviallyNormedField 𝕜 F : Type v inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace 𝕜 F ι : Type u_2 E : ι → Type u_3 inst✝² : (i : ι) → NormedAddCommGroup (E i) inst✝¹ : (i : ι) → NormedSpace 𝕜 (E i) inst✝ : Fintype ι f : ContinuousMultilinearMap 𝕜 E F ⊢ ∀ (m : ℕ), ↑m ≤ ⊤ → Continuous fun x => f.iteratedFDeriv m x
ae8227810170d45c
IsPGroup.smul_mul_inv_trivial_or_surjective
Mathlib/GroupTheory/SpecificGroups/ZGroup.lean
theorem smul_mul_inv_trivial_or_surjective [IsCyclic G] (hG : IsPGroup p G) {K : Type*} [Group K] [MulDistribMulAction K G] (hGK : (Nat.card G).Coprime (Nat.card K)) : (∀ g : G, ∀ k : K, k • g * g⁻¹ = 1) ∨ (∀ g : G, ∃ k : K, ∃ q : G, k • q * q⁻¹ = g)
case neg.inr.intro.intro.mk G : Type u_1 inst✝⁴ : Group G p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : IsCyclic G K : Type u_4 inst✝¹ : Group K inst✝ : MulDistribMulAction K G hGK : (Nat.card G).Coprime (Nat.card K) hc : ¬Nat.card G = 0 this : Finite G ϕ : K →* ZMod (Nat.card G) := MulDistribMulAction.toMonoidHomZModOfIsCyclic G K ⋯ h : ∀ (g : G) (k : K) (n : ℤ), ϕ k - 1 = ↑n → k • g * g⁻¹ = g ^ n hG : ∀ (k : K), ϕ k = 1 ∨ IsUnit (ϕ k - 1) k : K hk : ¬ϕ k = 1 u v : ZMod (Nat.card G) hvu : v.cast * u.cast ≡ 1 [ZMOD ↑(Nat.card G)] hu : ↑u.cast = ϕ k - 1 p : G ⊢ k • p ^ v.cast * (p ^ v.cast)⁻¹ = p ^ 1
rw [h (p ^ v.cast) k u.cast hu.symm, ← zpow_mul, zpow_eq_zpow_iff_modEq]
case neg.inr.intro.intro.mk G : Type u_1 inst✝⁴ : Group G p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : IsCyclic G K : Type u_4 inst✝¹ : Group K inst✝ : MulDistribMulAction K G hGK : (Nat.card G).Coprime (Nat.card K) hc : ¬Nat.card G = 0 this : Finite G ϕ : K →* ZMod (Nat.card G) := MulDistribMulAction.toMonoidHomZModOfIsCyclic G K ⋯ h : ∀ (g : G) (k : K) (n : ℤ), ϕ k - 1 = ↑n → k • g * g⁻¹ = g ^ n hG : ∀ (k : K), ϕ k = 1 ∨ IsUnit (ϕ k - 1) k : K hk : ¬ϕ k = 1 u v : ZMod (Nat.card G) hvu : v.cast * u.cast ≡ 1 [ZMOD ↑(Nat.card G)] hu : ↑u.cast = ϕ k - 1 p : G ⊢ v.cast * u.cast ≡ 1 [ZMOD ↑(orderOf p)]
b33bc739e8adc37b
abs_one_div
Mathlib/Algebra/Order/Field/Basic.lean
theorem abs_one_div (a : α) : |1 / a| = 1 / |a|
α : Type u_2 inst✝ : LinearOrderedField α a : α ⊢ |1 / a| = 1 / |a|
rw [abs_div, abs_one]
no goals
ed2a7b8e8201fe19
Nat.card_pair_lcm_eq.f_img
Mathlib/Algebra/Order/Antidiag/Nat.lean
theorem f_img {n : ℕ} (hn : Squarefree n) (a : Fin 3 → ℕ) (ha : a ∈ finMulAntidiag 3 n) : f a ha ∈ Finset.filter (fun ⟨x, y⟩ => x.lcm y = n) (n.divisors ×ˢ n.divisors)
case h n : ℕ hn : Squarefree n a : Fin 3 → ℕ ha : a ∈ finMulAntidiag 3 n ⊢ a 0 * a 1 * a 2 = a 1 * a 2 * a 0
ring
no goals
266d4fcf66130dfe
Batteries.RBNode.Balanced.zoom
Mathlib/.lake/packages/batteries/Batteries/Data/RBMap/Alter.lean
theorem _root_.Batteries.RBNode.Balanced.zoom : t.Balanced c n → path.Balanced c₀ n₀ c n → zoom cut t path = (t', path') → ∃ c n, t'.Balanced c n ∧ path'.Balanced c₀ n₀ c n | .nil, hp => fun e => by cases e; exact ⟨_, _, .nil, hp⟩ | .red ha hb, hp => by unfold zoom; split · exact ha.zoom (.redL hb hp) · exact hb.zoom (.redR ha hp) · intro e; cases e; exact ⟨_, _, .red ha hb, hp⟩ | .black ha hb, hp => by unfold zoom; split · exact ha.zoom (.blackL hb hp) · exact hb.zoom (.blackR ha hp) · intro e; cases e; exact ⟨_, _, .black ha hb, hp⟩
case h_3 α✝ : Type u_1 cut : α✝ → Ordering t : RBNode α✝ path : Path α✝ t' : RBNode α✝ path' : Path α✝ c₀ : RBColor n₀ : Nat c : RBColor n✝ n : Nat x✝¹ y✝ : RBNode α✝ v✝ : α✝ ha : x✝¹.Balanced black n hb : y✝.Balanced black n hp : Path.Balanced c₀ n₀ path red n x✝ : Ordering heq✝ : cut v✝ = Ordering.eq e : (node red x✝¹ v✝ y✝, path) = (t', path') ⊢ ∃ c n, t'.Balanced c n ∧ Path.Balanced c₀ n₀ path' c n
cases e
case h_3.refl α✝ : Type u_1 cut : α✝ → Ordering t : RBNode α✝ path : Path α✝ c₀ : RBColor n₀ : Nat c : RBColor n✝ n : Nat x✝¹ y✝ : RBNode α✝ v✝ : α✝ ha : x✝¹.Balanced black n hb : y✝.Balanced black n hp : Path.Balanced c₀ n₀ path red n x✝ : Ordering heq✝ : cut v✝ = Ordering.eq ⊢ ∃ c n, (node red x✝¹ v✝ y✝).Balanced c n ∧ Path.Balanced c₀ n₀ path c n
cff44faeb7153c11
Polynomial.content_X_mul
Mathlib/RingTheory/Polynomial/Content.lean
theorem content_X_mul {p : R[X]} : content (X * p) = content p
case h R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R p : R[X] a : ℕ ⊢ ¬(X * p).coeff a = 0 ↔ ∃ a_1, ¬p.coeff a_1 = 0 ∧ a_1.succ = a
rcases a with - | a
case h.zero R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R p : R[X] ⊢ ¬(X * p).coeff 0 = 0 ↔ ∃ a, ¬p.coeff a = 0 ∧ a.succ = 0 case h.succ R : Type u_1 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R p : R[X] a : ℕ ⊢ ¬(X * p).coeff (a + 1) = 0 ↔ ∃ a_1, ¬p.coeff a_1 = 0 ∧ a_1.succ = a + 1
ac071a5a6c3a3683
Submodule.LinearDisjoint.of_linearDisjoint_fg_right
Mathlib/LinearAlgebra/LinearDisjoint.lean
theorem of_linearDisjoint_fg_right (H : ∀ N' : Submodule R S, N' ≤ N → N'.FG → M.LinearDisjoint N') : M.LinearDisjoint N := (linearDisjoint_iff _ _).2 fun x y hxy ↦ by obtain ⟨N', hN, hFG, h⟩ := TensorProduct.exists_finite_submodule_right_of_finite' {x, y} (Set.toFinite _) rw [Module.Finite.iff_fg] at hFG obtain ⟨x', hx'⟩ := h (show x ∈ {x, y} by simp) obtain ⟨y', hy'⟩ := h (show y ∈ {x, y} by simp) rw [← hx', ← hy']; congr exact (H N' hN hFG).injective (by simp [← mulMap_comp_lTensor _ hN, hx', hy', hxy])
case intro.intro.intro R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S M N : Submodule R S H : ∀ N' ≤ N, N'.FG → M.LinearDisjoint N' x y : ↥M ⊗[R] ↥N hxy : (M.mulMap N) x = (M.mulMap N) y N' : Submodule R S hN : N' ≤ N hFG : N'.FG h : {x, y} ⊆ ↑(LinearMap.range (LinearMap.lTensor (↥M) (inclusion hN))) ⊢ x = y
obtain ⟨x', hx'⟩ := h (show x ∈ {x, y} by simp)
case intro.intro.intro.intro R : Type u S : Type v inst✝² : CommSemiring R inst✝¹ : Semiring S inst✝ : Algebra R S M N : Submodule R S H : ∀ N' ≤ N, N'.FG → M.LinearDisjoint N' x y : ↥M ⊗[R] ↥N hxy : (M.mulMap N) x = (M.mulMap N) y N' : Submodule R S hN : N' ≤ N hFG : N'.FG h : {x, y} ⊆ ↑(LinearMap.range (LinearMap.lTensor (↥M) (inclusion hN))) x' : ↥M ⊗[R] ↥N' hx' : (LinearMap.lTensor (↥M) (inclusion hN)) x' = x ⊢ x = y
3ea9d0fb125f2a5e
WithSeminorms.isVonNBounded_iff_seminorm_bounded
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {s : Set E} (hp : WithSeminorms p) : Bornology.IsVonNBounded 𝕜 s ↔ ∀ i : ι, ∃ r > 0, ∀ x ∈ s, p i x < r
case neg 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : Nonempty ι p : SeminormFamily 𝕜 E ι inst✝ : TopologicalSpace E s : Set E hp : WithSeminorms p hi : ∀ (i : ι), ∃ r > 0, ∀ x ∈ s, (p i) x < r I : Finset ι hI : ¬I.Nonempty ⊢ ∃ r > 0, ∀ x ∈ s, (I.sup p) x < r
simp only [Finset.not_nonempty_iff_eq_empty.mp hI, Finset.sup_empty, coe_bot, Pi.zero_apply, exists_prop]
case neg 𝕜 : Type u_1 E : Type u_5 ι : Type u_8 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : AddCommGroup E inst✝² : Module 𝕜 E inst✝¹ : Nonempty ι p : SeminormFamily 𝕜 E ι inst✝ : TopologicalSpace E s : Set E hp : WithSeminorms p hi : ∀ (i : ι), ∃ r > 0, ∀ x ∈ s, (p i) x < r I : Finset ι hI : ¬I.Nonempty ⊢ ∃ r > 0, ∀ x ∈ s, 0 < r
24b13a155e892387