name
stringlengths
7
15
statement
stringlengths
75
1.66k
id
stringlengths
16
16
putnam_1963_b2
abbrev putnam_1963_b2_solution : Prop := sorry -- True /-- Let $S$ be the set of all numbers of the form $2^m3^n$, where $m$ and $n$ are integers, and let $P$ be the set of all positive real numbers. Is $S$ dense in $P$? -/ theorem putnam_1963_b2 (S : Set ℝ) (hS : S = {2 ^ m * 3 ^ n | (m : β„€) (n : β„€)}) : closure S βŠ‡ Set.Ioi (0 : ℝ) ↔ putnam_1963_b2_solution := sorry
b039d7145c470c58
putnam_1986_b3
theorem putnam_1986_b3 (n p : β„•) (nppos : n > 0 ∧ p > 0) (pprime : Nat.Prime p) (cong : Polynomial β„€ β†’ Polynomial β„€ β†’ β„€ β†’ Prop) (hcong : βˆ€ f g m, cong f g m ↔ βˆ€ i : β„•, m ∣ (f - g).coeff i) (f g h r s : Polynomial β„€) (hcoprime : cong (r * f + s * g) 1 p) (hprod : cong (f * g) h p) : (βˆƒ F G : Polynomial β„€, cong F f p ∧ cong G g p ∧ cong (F * G) h (p ^ n)) := sorry
8580651ad4bfabbb
putnam_1996_b3
abbrev putnam_1996_b3_solution : β„• β†’ β„• := sorry -- (fun n : β„• => (2 * n ^ 3 + 3 * n ^ 2 - 11 * n + 18) / 6) /-- Given that $\{x_1,x_2,\ldots,x_n\}=\{1,2,\ldots,n\}$, find, with proof, the largest possible value, as a function of $n$ (with $n \geq 2$), of $x_1x_2+x_2x_3+\cdots+x_{n-1}x_n+x_nx_1$. -/ theorem putnam_1996_b3 (n : β„•) (hn : n β‰₯ 2) : IsGreatest {k | βˆƒ x : β„• β†’ β„€, (x '' (Finset.range n) = Set.Icc (1 : β„€) n) ∧ βˆ‘ i : Fin n, x i * x ((i + 1) % n) = k} (putnam_1996_b3_solution n) := sorry
c5077c43db23b9da
putnam_1974_b6
abbrev putnam_1974_b6_solution : (β„• Γ— β„• Γ— β„•) := sorry -- ((2^1000 - 1)/3, (2^1000 - 1)/3, 1 + (2^1000 - 1)/3) /-- For a set with $1000$ elements, how many subsets are there whose candinality is respectively $\equiv 0 \bmod 3, \equiv 1 \bmod 3, \equiv 2 \bmod 3$? -/ theorem putnam_1974_b6 (n : β„€) (hn : n = 1000) (count0 count1 count2 : β„•) (hcount0 : count0 = {S | S βŠ† Finset.Icc 1 n ∧ S.card ≑ 0 [MOD 3]}.ncard) (hcount1 : count1 = {S | S βŠ† Finset.Icc 1 n ∧ S.card ≑ 1 [MOD 3]}.ncard) (hcount2 : count2 = {S | S βŠ† Finset.Icc 1 n ∧ S.card ≑ 2 [MOD 3]}.ncard) : (count0, count1, count2) = putnam_1974_b6_solution := sorry
3d65f9291c5b3200
putnam_1964_b6
theorem putnam_1964_b6 (D : Set (EuclideanSpace ℝ (Fin 2))) (hD : D = {v : EuclideanSpace ℝ (Fin 2) | dist 0 v ≀ 1}) (cong : Set (EuclideanSpace ℝ (Fin 2)) β†’ Set (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (hcong : βˆ€ A B, cong A B ↔ βˆƒ f : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)), B = f '' A ∧ βˆ€ v w : EuclideanSpace ℝ (Fin 2), dist v w = dist (f v) (f w)) : (Β¬βˆƒ A B : Set (Fin 2 β†’ ℝ), cong A B ∧ A ∩ B = βˆ… ∧ A βˆͺ B = D) := sorry
631798de1c67bc48
putnam_2013_b3
abbrev putnam_2013_b3_solution : Prop := sorry -- True /-- Let $\mathcal{P}$ be a nonempty collection of subsets of $\{1,\dots, n\}$ such that: \begin{enumerate} \item[(i)] if $S, S' \in \mathcal{P}$, then $S \cup S' \in \mathcal{P}$ and $S \cap S' \in \mathcal{P}$, and \item[(ii)] if $S \in \mathcal{P}$ and $S \neq \emptyset$, then there is a subset $T \subset S$ such that $T \in \mathcal{P}$ and $T$ contains exactly one fewer element than $S$. \end{enumerate} Suppose that $f: \mathcal{P} \to \mathbb{R}$ is a function such that $f(\emptyset) = 0$ and \[f(S \cup S') = f(S) + f(S') - f(S \cap S') \mbox{ for all $S,S' \in \mathcal{P}$.} \] Must there exist real numbers $f_1,\dots,f_n$ such that\[f(S) = \sum_{i \in S} f_i\] \n for every $S \in \mathcal{P}$? -/ theorem putnam_2013_b3 : (βˆ€ (n : β„•) (P : Finset (Finset (Fin n))) (f : Finset (Fin n) β†’ ℝ), P β‰  βŠ₯ β†’ (βˆ€ S ∈ P, βˆ€ S' ∈ P, S βˆͺ S' ∈ P ∧ S ∩ S' ∈ P) β†’ (βˆ€ S ∈ P, S β‰  βŠ₯ β†’ βˆƒ T ∈ P, T βŠ‚ S ∧ Finset.card T + 1 = Finset.card S) β†’ f βŠ₯ = 0 β†’ (βˆ€ S ∈ P, βˆ€ S' ∈ P, f (S βˆͺ S') = f S + f S' - f (S ∩ S')) β†’ βˆƒ r : Fin n β†’ ℝ, βˆ€ S ∈ P, f S = βˆ‘ i in S, r i) ↔ putnam_2013_b3_solution := sorry
185a012e14172598
putnam_2003_b3
theorem putnam_2003_b3 (n : β„•) : n ! = ∏ i in Finset.Icc 1 n, ((List.range ⌊n / iβŒ‹β‚Š).map succ).foldl Nat.lcm 1 := sorry
baf0aacbeaf4dad1
putnam_1970_a2
theorem putnam_1970_a2 (A B C D E F G : ℝ) (hle : B^2 - 4*A*C < 0) : βˆƒ Ξ΄ > 0, Β¬βˆƒ x y : ℝ, x^2 + y^2 ∈ Set.Ioo 0 (Ξ΄^2) ∧ A*x^2 + B*x*y + C*y^2 + D*x^3 + E*x^2*y + F*x*y^2 + G*y^3 = 0 := sorry
e758caba328bad48
putnam_2008_b4
theorem putnam_2008_b4 (p : β„•) (hp : Nat.Prime p) (h : Polynomial β„€) (hh : βˆ€ i j : Finset.range (p ^ 2), h.eval i ≑ h.eval j [ZMOD p ^ 2] β†’ i = j) : (βˆ€ i j : Finset.range (p ^ 3), h.eval i ≑ h.eval j [ZMOD p ^ 3] β†’ i = j) := sorry
589761e4f74cda80
putnam_2018_b4
theorem putnam_2018_b4 (a : ℝ) (x : β„• β†’ ℝ) (hx0 : x 0 = 1) (hx12 : x 1 = a ∧ x 2 = a) (hxn : βˆ€ n, x (n + 3) = 2 * (x (n + 2)) * (x (n + 1)) - x n) : (βˆƒ n, x n = 0) β†’ (βˆƒ c, c > 0 ∧ Function.Periodic x c) := sorry
1a04f661e9c83461
putnam_1968_b5
abbrev putnam_1968_b5_solution : β„• β†’ β„• := sorry -- fun p => p^2 + p /-- Let $p$ be a prime number. Find the number of distinct $2 \times 2$ matrices $$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ such that $a, b, c, d \in \{0, 1, ..., p - 1\}$, $a + d \equiv 1 \pmod p$, and $ad - bc \equiv 0 \pmod p$. -/ theorem putnam_1968_b5 (p : β„•) (hp : Prime p) : {M : Matrix (Fin 2) (Fin 2) (ZMod p) | M 0 0 + M 1 1 = 1 ∧ M 0 0 * M 1 1 - M 0 1 * M 1 0 = 0}.ncard = putnam_1968_b5_solution p := sorry
892df511eaf6c029
putnam_1985_a3
abbrev putnam_1985_a3_solution : ℝ β†’ ℝ := sorry -- fun d ↦ exp d - 1 /-- Let $d$ be a real number. For each integer $m \geq 0$, define a sequence $\{a_m(j)\}$, $j=0,1,2,\dots$ by the condition \begin{align*} a_m(0) &= d/2^m, \\ a_m(j+1) &= (a_m(j))^2 + 2a_m(j), \qquad j \geq 0. \end{align*} Evaluate $\lim_{n \to \infty} a_n(n)$. -/ theorem putnam_1985_a3 (d : ℝ) (a : β„• β†’ β„• β†’ ℝ) (ha0 : βˆ€ m : β„•, a m 0 = d / 2 ^ m) (ha : βˆ€ m : β„•, βˆ€ j : β„•, a m (j + 1) = (a m j) ^ 2 + 2 * a m j) : Tendsto (fun n ↦ a n n) atTop (𝓝 (putnam_1985_a3_solution d)) := sorry
96110cd8c90a15d9
putnam_1978_b5
abbrev putnam_1978_b5_solution : Polynomial ℝ := sorry -- 4 * X ^ 4 - 4 * X ^ 2 + 1 /-- Find the real polynomial $p(x)$ of degree $4$ with largest possible coefficient of $x^4$ such that $p([-1, 1]) \subseteq [0, 1]$. -/ theorem putnam_1978_b5 (S : Set (Polynomial ℝ)) (hS : S = {p : Polynomial ℝ | p.degree = 4 ∧ βˆ€ x ∈ Icc (-1) 1, p.eval x ∈ Icc 0 1}) : (putnam_1978_b5_solution ∈ S ∧ (βˆ€ p ∈ S, p.coeff 4 ≀ putnam_1978_b5_solution.coeff 4)) := sorry
701748b818a933bd
putnam_1995_a3
theorem putnam_1995_a3 (relation : (Fin 9 β†’ β„€) β†’ (Fin 9 β†’ β„€) β†’ Prop) (digits_to_num : (Fin 9 β†’ β„€) β†’ β„€) (hdigits_to_num : digits_to_num = fun dig => βˆ‘ i : Fin 9, (dig i) * 10^i.1) (hrelation : βˆ€ d e : (Fin 9 β†’ β„€), relation d e ↔ (βˆ€ i : Fin 9, d i < 10 ∧ d i β‰₯ 0 ∧ e i < 10 ∧ e i β‰₯ 0) ∧ (βˆ€ i : Fin 9, 7 ∣ (digits_to_num (fun j : Fin 9 => if j = i then e j else d j)))) : βˆ€ d e f : (Fin 9 β†’ β„€), ((relation d e) ∧ (relation e f)) β†’ (βˆ€ i : Fin 9, 7 ∣ d i - f i) := sorry
0c477dbe4635975a
putnam_2010_a3
theorem putnam_2010_a3 (h : ℝ Γ— ℝ β†’ ℝ) (a b M : ℝ) (H : ContDiff ℝ 1 h) (H' : βˆ€ x, h x = a * (fderiv ℝ h (1, 0) x) + (fderiv ℝ h (0, 1) x)) (H'' : βˆ€ x, |h x| ≀ M) : h = 0 := sorry
f0acd96a1d540fa5
putnam_1977_a6
abbrev putnam_1977_a6_solution : Prop := sorry -- True /-- Let $X$ be the square $[0, 1] \times [0, 1]$, and let $f : X \to \mathbb{R}$ be continuous. If $\int_Y f(x, y) \, dx \, dy = 0$ for all squares $Y$ such that \begin{itemize} \item[(1)] $Y \subseteq X$, \item[(2)] $Y$ has sides parallel to those of $X$, \item[(3)] at least one of $Y$'s sides is contained in the boundary of $X$, \end{itemize} is it true that $f(x, y) = 0$ for all $x, y$? -/ theorem putnam_1977_a6 (X : Set (ℝ Γ— ℝ)) (hX : X = Set.prod (Icc 0 1) (Icc 0 1)) (room : (ℝ Γ— ℝ) β†’ ℝ) (hroom : room = fun (a,b) ↦ min (min a (1 - a)) (min b (1 - b))) : ((βˆ€ f : (ℝ Γ— ℝ) β†’ ℝ, Continuous f β†’ (βˆ€ P ∈ X, ∫ x in (P.1 - room P)..(P.1 + room P), ∫ y in (P.2 - room P)..(P.2 + room P), f (x, y) = 0) β†’ (βˆ€ P ∈ X, f P = 0)) ↔ putnam_1977_a6_solution) := sorry
f9e08fb9aaaf0cff
putnam_1967_a6
abbrev putnam_1967_a6_solution : β„• := sorry -- 8 /-- Given real numbers $\{a_i\}$ and $\{b_i\}$, ($i=1,2,3,4$), such that $a_1b_2-a_2b_1 \neq 0$. Consider the set of all solutions $(x_1,x_2,x_3,x_4)$ of the simultaneous equations $a_1x_1+a_2x_2+a_3x_3+a_4x_4=0$ and $b_1x_1+b_2x_2+b_3x_3+b_4x_4=0$, for which no $x_i$ ($i=1,2,3,4$) is zero. Each such solution generates a $4$-tuple of plus and minus signs $(\text{signum }x_1,\text{signum }x_2,\text{signum }x_3,\text{signum }x_4)$. Determine, with a proof, the maximum number of distinct $4$-tuples possible. -/ theorem putnam_1967_a6 (abneq0 : (Fin 4 β†’ ℝ) β†’ (Fin 4 β†’ ℝ) β†’ Prop) (habneq0 : abneq0 = (fun a b : Fin 4 β†’ ℝ => a 0 * b 1 - a 1 * b 0 β‰  0)) (numtuples : (Fin 4 β†’ ℝ) β†’ (Fin 4 β†’ ℝ) β†’ β„•) (hnumtuples : βˆ€ a b : Fin 4 β†’ ℝ, numtuples a b = {s : Fin 4 β†’ ℝ | βˆƒ x : Fin 4 β†’ ℝ, (βˆ€ i : Fin 4, x i β‰  0) ∧ (βˆ‘ i : Fin 4, a i * x i) = 0 ∧ (βˆ‘ i : Fin 4, b i * x i) = 0 ∧ (βˆ€ i : Fin 4, s i = Real.sign (x i))}.encard) : (βˆƒ a b : Fin 4 β†’ ℝ, abneq0 a b ∧ numtuples a b = putnam_1967_a6_solution) ∧ (βˆ€ a b : Fin 4 β†’ ℝ, abneq0 a b β†’ numtuples a b ≀ putnam_1967_a6_solution) := sorry
a7ceea55dcd5d16a
putnam_2003_a5
theorem putnam_2003_a5 (n : β„•) (npos : n > 0) (dyckpath : (m : β„•) β†’ Set ((Fin (2 * m)) β†’ β„€)) (hdyckpath : dyckpath = fun m ↦ {p | range p βŠ† {-1, 1} ∧ βˆ‘ k, p k = 0 ∧ βˆ€ j, βˆ‘ k, ite (k ≀ j) (p k) 0 β‰₯ 0}) (noevenreturn : (m : β„•) β†’ Set ((Fin (2 * m)) β†’ β„€)) (hnoevenreturn : noevenreturn = fun m ↦ {p | Β¬βˆƒ i j, i < j ∧ p i = 1 ∧ (βˆ€ k ∈ Ioc i j, p i = -1) ∧ Even (j.1 - i.1) ∧ βˆ‘ k, ite (k ≀ j) (p k) 0 = 0}) : βˆƒ f : ((Fin (2 * n)) β†’ β„€) β†’ (Fin (2 * (n - 1)) β†’ β„€), βˆ€ y ∈ dyckpath (n - 1), βˆƒ! x, x ∈ dyckpath n ∩ noevenreturn n ∧ f x = y := sorry
66e908b70c22ba70
putnam_2013_a5
theorem putnam_2013_a5 (m : β„•) (area2 : (Fin 2 β†’ ℝ) β†’ (Fin 2 β†’ ℝ) β†’ (Fin 2 β†’ ℝ) β†’ ℝ) (area3 : (Fin 3 β†’ ℝ) β†’ (Fin 3 β†’ ℝ) β†’ (Fin 3 β†’ ℝ) β†’ ℝ) (areadef2 : (Fin m β†’ Fin m β†’ Fin m β†’ ℝ) β†’ Prop) (areadef3 : (Fin m β†’ Fin m β†’ Fin m β†’ ℝ) β†’ Prop) (mge3 : m β‰₯ 3) (harea2 : βˆ€ a b c, area2 a b c = (volume (convexHull ℝ {a, b, c})).toReal) (harea3 : βˆ€ a b c, area3 a b c = (ΞΌH[2] (convexHull ℝ {a, b, c})).toReal) (hareadef2 : βˆ€ a, areadef2 a ↔ βˆ€ A : Fin m β†’ (Fin 2 β†’ ℝ), (βˆ‘ i : Fin m, βˆ‘ j : Fin m, βˆ‘ k : Fin m, if (i < j ∧ j < k) then (a i j k * area2 (A i) (A j) (A k)) else 0) β‰₯ 0) (hareadef3 : βˆ€ a, areadef3 a ↔ βˆ€ A : Fin m β†’ (Fin 3 β†’ ℝ), (βˆ‘ i : Fin m, βˆ‘ j : Fin m, βˆ‘ k : Fin m, if (i < j ∧ j < k) then (a i j k * area3 (A i) (A j) (A k)) else 0) β‰₯ 0) : βˆ€ a, areadef2 a β†’ areadef3 a := sorry
09dadb84ed35d39f
putnam_1989_b6
theorem putnam_1989_b6 (n : β„•) [NeZero n] (I : (Fin n β†’ ℝ) β†’ Fin (n + 2) β†’ ℝ) (I_def : βˆ€ x i, I x i = if i = 0 then 0 else if i = - 1 then 1 else x (i : β„•).pred) (X : Set (Fin n β†’ ℝ)) (X_def : βˆ€ x, x ∈ X ↔ 0 < x 0 ∧ x (-1) < 1 ∧ βˆ€ i, i + 1 < n β†’ x i < x (i + 1)) (S : (ℝ β†’ ℝ) β†’ (Fin (n + 2) β†’ ℝ) β†’ ℝ) (S_def : βˆ€ f x, S f x = βˆ‘ i in Finset.Iic n, (x (i + 1) - x i) * f (i + 1)) : βˆƒ P : Polynomial ℝ, P.degree = n ∧ (βˆ€ t ∈ Icc 0 1, P.eval t ∈ Icc 0 1) ∧ (βˆ€ f : ℝ β†’ ℝ, f 1 = 0 β†’ ContinuousOn f (Icc 0 1) β†’ ∫ x, S f (I x) βˆ‚β„™[|X] = ∫ t in (0)..1, f t * P.eval t) := sorry
3b47611a00a667ae
putnam_1999_b6
theorem putnam_1999_b6 (S : Finset β„€) (hSgt : βˆ€ s, s ∈ S β†’ s > 1) (hSgcd : βˆ€ n, βˆƒ s ∈ S, Int.gcd s n = 1 ∨ Int.gcd s n = s) : βˆƒα΅‰ (s ∈ S) (t ∈ S), Prime (Int.gcd s t) := sorry
c82e786c67b07261
putnam_1996_a5
theorem putnam_1996_a5 (p : β„•) (hpprime : Prime p) (hpge3 : p > 3) (k : β„•) (hk : k = Nat.floor (2*p/(3 : β„š))) : p^2 ∣ βˆ‘ i in Finset.Icc 1 k, Nat.choose p i := sorry
5850cdd3b7ec6fef
putnam_1986_a5
theorem putnam_1986_a5 (n : β„•) (hn : 1 ≀ n) (f : Fin n β†’ ((Fin n β†’ ℝ) β†’ ℝ)) (hf : βˆ€ i, ContDiff ℝ 2 (f i)) (C : Fin n β†’ Fin n β†’ ℝ) (hf' : βˆ€ i j : Fin n, βˆ€ x : Fin n β†’ ℝ, fderiv ℝ (f i) x (Pi.single j 1) - fderiv ℝ (f j) x (Pi.single i 1) = C i j) : βˆƒ g : (Fin n β†’ ℝ) β†’ ℝ, βˆ€ i : Fin n, IsLinearMap ℝ (Ξ» x ↦ f i x + fderiv ℝ g x (Pi.single i 1)) := sorry
51160fabb4ba5bfe
putnam_1981_a1
abbrev putnam_1981_a1_solution : ℝ := sorry -- 1/8 /-- Let $E(n)$ be the greatest integer $k$ such that $5^k$ divides $1^1 2^2 3^3 \cdots n^n$. Find $\lim_{n \rightarrow \infty} \frac{E(n)}{n^2}$. -/ theorem putnam_1981_a1 (P : β„• β†’ β„• β†’ Prop) (hP : βˆ€ n k, P n k ↔ 5^k ∣ ∏ m in Finset.Icc 1 n, (m^m : β„€)) (E : β„• β†’ β„•) (hE : βˆ€ n ∈ Ici 1, P n (E n) ∧ βˆ€ k : β„•, P n k β†’ k ≀ E n) : Tendsto (fun n : β„• => ((E n) : ℝ)/n^2) atTop (𝓝 putnam_1981_a1_solution) := sorry
9813035730f27b9b
putnam_2004_a1
abbrev putnam_2004_a1_solution : Prop := sorry -- True /-- Basketball star Shanille O'Keal's team statistician keeps track of the number, $S(N)$, of successful free throws she has made in her first $N$ attempts of the season. Early in the season, $S(N)$ was less than $80\%$ of $N$, but by the end of the season, $S(N)$ was more than $80\%$ of $N$. Was there necessarily a moment in between when $S(N)$ was exactly $80\%$ of $N$? -/ theorem putnam_2004_a1 (S : (β„• β†’ Fin 2) β†’ β„• β†’ ℝ) (hS : βˆ€ attempts, βˆ€ N β‰₯ 1, S attempts N = (βˆ‘ i : Fin N, (attempts i).1) / N) : (βˆ€ attempts a b, (1 ≀ a ∧ a < b ∧ S attempts a < 0.8 ∧ S attempts b > 0.8) β†’ (βˆƒ c : β„•, a < c ∧ c < b ∧ S attempts c = 0.8)) ↔ putnam_2004_a1_solution := sorry
a37d15ee1e52be11
putnam_2014_a1
theorem putnam_2014_a1 (f : ℝ β†’ ℝ) (hf : βˆ€ x : ℝ, f x = (1 - x + x ^ 2) * Real.exp x) (hfdiff : ContDiff ℝ ⊀ f) (c : β„• β†’ ℝ) (hc : βˆ€ k : β„•, c k = taylorCoeffWithin f k Set.univ 0) : βˆ€ k : β„•, c k β‰  0 β†’ βˆƒ q : β„š, c k = q ∧ (q.num = 1 ∨ Prime q.num.natAbs) := sorry
3a79b3513e88e5a0
putnam_1963_a4
theorem putnam_1963_a4 (T : (β„• β†’ ℝ) β†’ (β„• β†’ ℝ)) (T_def : βˆ€ a n, T a n = n * ((1 + a (n + 1)) / a n - 1)) (P : (β„• β†’ ℝ) β†’ ℝ β†’ Prop) (P_def : βˆ€ a C, P a C ↔ C ≀ limsup (T a) atTop ∨ Β¬ BddAbove (range (T a))) : (βˆ€ a, (βˆ€ n, 0 < a n) β†’ P a 1) ∧ (βˆ€ C > 1, βˆƒ a, (βˆ€ n, 0 < a n) ∧ Β¬ P a C) := sorry
b72f9f8c37d3ffd9
putnam_1973_a4
abbrev putnam_1973_a4_solution : β„• := sorry -- 3 /-- How many zeros does the function $f(x) = 2^x - 1 - x^2$ have on the real line? -/ theorem putnam_1973_a4 (f : ℝ β†’ ℝ) (hf : f = fun x => 2^x - 1 - x^2) : putnam_1973_a4_solution = {x : ℝ | f x = 0}.ncard := sorry
2f69a243a37a2dcb
putnam_1987_a4
abbrev putnam_1987_a4_solution : β„‚ := sorry -- (5 / 3) * sqrt 30 /-- Let $P$ be a polynomial, with real coefficients, in three variables and $F$ be a function of two variables such that \[ P(ux, uy, uz) = u^2 F(y-x,z-x) \quad \mbox{for all real $x,y,z,u$}, \] and such that $P(1,0,0)=4$, $P(0,1,0)=5$, and $P(0,0,1)=6$. Also let $A,B,C$ be complex numbers with $P(A,B,C)=0$ and $|B-A|=10$. Find $|C-A|$. -/ theorem putnam_1987_a4 (P : MvPolynomial (Fin 3) β„‚) (hPreal : βˆ€ i : Fin 3 β†’β‚€ β„•, (coeff i P).im = 0) (F : ℝ β†’ ℝ β†’ ℝ) (vars : β„‚ β†’ β„‚ β†’ β„‚ β†’ (Fin 3 β†’ β„‚)) (hvars : vars = fun a b c ↦ fun i ↦ ite (i = 0) a (ite (i = 1) b c)) (h : βˆ€ x y z u : ℝ, eval (vars (u * x) (u * y) (u * z)) P = u ^ 2 * F (y - x) (z - x)) (hPval : eval (vars 1 0 0) P = 4 ∧ eval (vars 0 1 0) P = 5 ∧ eval (vars 0 0 1) P = 6) (A B C : β„‚) (hPABC : eval (vars A B C) P = 0) (habs : β€–B - Aβ€– = 10) : (β€–C - Aβ€– = putnam_1987_a4_solution) := sorry
2fc94706a7ec30e2
putnam_1997_a4
theorem putnam_1997_a4 (G : Type*) [Group G] (Ο† : G β†’ G) (hΟ† : βˆ€ g1 g2 g3 h1 h2 h3 : G, (g1 * g2 * g3 = 1 ∧ h1 * h2 * h3 = 1) β†’ Ο† g1 * Ο† g2 * Ο† g3 = Ο† h1 * Ο† h2 * Ο† h3) : βˆƒ a : G, let ψ := fun g => a * Ο† g; βˆ€ x y : G, ψ (x * y) = ψ x * ψ y := sorry
33f486c7439b4386
putnam_1975_a1
abbrev putnam_1975_a1_solution : ((β„€ Γ— β„€) β†’ β„€) Γ— ((β„€ Γ— β„€) β†’ β„€) := sorry -- (fun (a, b) => a + b + 1, fun (a, b) => a - b) /-- If an integer $n$ can be written as the sum of two triangular numbers (that is, $n = \frac{a^2 + a}{2} + \frac{b^2 + b}{2}$ for some integers $a$ and $b$), express $4n + 1$ as the sum of the squares of two integers $x$ and $y$, giving $x$ and $y$ in terms of $a$ and $b$. Also, show that if $4n + 1 = x^2 + y^2$ for some integers $x$ and $y$, then $n$ can be written as the sum of two triangular numbers. -/ theorem putnam_1975_a1 (nab nxy : (β„€ Γ— β„€ Γ— β„€) β†’ Prop) (hnab : nab = fun (n, a, b) => n = (a^2 + (a : β„š))/2 + (b^2 + (b : β„š))/2) (hnxy : nxy = fun (n, x, y) => 4*n + 1 = x^2 + y^2) : (βˆ€ n a b : β„€, nab (n, a, b) β†’ nxy (n, putnam_1975_a1_solution.1 (a, b), putnam_1975_a1_solution.2 (a, b))) ∧ βˆ€ n : β„€, (βˆƒ x y : β„€, nxy (n, x, y)) β†’ βˆƒ a b : β„€, nab (n, a, b) := sorry
edb35adf7bfd4c56
putnam_1965_a1
abbrev putnam_1965_a1_solution : ℝ := sorry -- Real.pi / 15 /-- Let $\triangle ABC$ satisfy $\angle CAB < \angle BCA < \frac{\pi}{2} < \angle ABC$. If the bisector of the external angle at $A$ meets line $BC$ at $P$, the bisector of the external angle at $B$ meets line $CA$ at $Q$, and $AP = BQ = AB$, find $\angle CAB$. -/ theorem putnam_1965_a1 (A B C X Y : EuclideanSpace ℝ (Fin 2)) (hABC : Β¬Collinear ℝ {A, B, C}) (hangles : ∠ C A B < ∠ B C A ∧ ∠ B C A < Ο€/2 ∧ Ο€/2 < ∠ A B C) (hX : Collinear ℝ {X, B, C} ∧ ∠ X A B = (Ο€ - ∠ C A B)/2 ∧ dist A X = dist A B) (hY : Collinear ℝ {Y, C, A} ∧ ∠ Y B C = (Ο€ - ∠ A B C)/2 ∧ dist B Y = dist A B) : ∠ C A B = putnam_1965_a1_solution := sorry
801a7e53041baba6
putnam_2012_a4
theorem putnam_2012_a4 (IsFiniteAP : Set β„€ β†’ Prop) (IsFiniteAP_def : βˆ€ s, IsFiniteAP s ↔ βˆƒ n : β„•, βˆƒ a d : β„€, 0 < d ∧ s = {a + i * d | i : Fin n}) (q r : β„€) (A B : Fin 2 β†’ ℝ) (T : Set β„€) (S : Set β„€) (qpos : q > 0) (ABlt : A 0 < A 1 ∧ B 0 < B 1) (hT : T = {x : β„€ | βˆƒ b m : β„€, (b : ℝ) ∈ Set.Icc (B 0) (B 1) ∧ x = b + m * q}) (hS : S = {a : β„€ | (a : ℝ) ∈ Set.Icc (A 0) (A 1) ∧ r * a ∈ T}) (prod_lt : (A 1 - A 0) * (B 1 - B 0) < q) : IsFiniteAP {x | x ∈ S ∧ (x : ℝ) ∈ Set.Icc (A 0) (A 1)} := sorry
2452deb7e5980507
putnam_1972_a5
theorem putnam_1972_a5 (n : β„•) (hn : n > 1) : Β¬((n : β„€) ∣ 2^n - 1) := sorry
a058f7bd349016a4
putnam_1962_a5
abbrev putnam_1962_a5_solution : β„• β†’ β„• := sorry -- fun n : β„• => n * (n + 1) * 2^(n - 2) /-- Evaluate in closed form \[ \sum_{k=1}^n {n \choose k} k^2. \] -/ theorem putnam_1962_a5 : βˆ€ n β‰₯ 2, putnam_1962_a5_solution n = βˆ‘ k in Finset.Icc 1 n, Nat.choose n k * k^2 := sorry
398b11f0294a4b06
putnam_1993_a6
theorem putnam_1993_a6 (seq : β„• β†’ β„€) (hseq23 : βˆ€ n, seq n = 2 ∨ seq n = 3) (hseq2inds : βˆ€ n, seq n = 2 ↔ (βˆƒ N : β„•, n = βˆ‘ i : Fin N, (seq i + 1))) : βˆƒ r : ℝ, βˆ€ n, seq n = 2 ↔ (βˆƒ m : β„€, n + 1 = 1 + Int.floor (r * m)) := sorry
48de00a3fed833a4
putnam_1983_a6
abbrev putnam_1983_a6_solution : ℝ := sorry -- 2 / 9 /-- Let $T$ be the triangle with vertices $(0, 0)$, $(a, 0)$, and $(0, a)$. Find $\lim_{a \to \infty} a^4 \exp(-a^3) \int_T \exp(x^3+y^3) \, dx \, dy$. -/ theorem putnam_1983_a6 (F : ℝ β†’ ℝ) (hF : F = fun a ↦ (a ^ 4 / exp (a ^ 3)) * ∫ x in (0)..a, ∫ y in (0)..(a - x), exp (x ^ 3 + y ^ 3)) : (Tendsto F atTop (𝓝 putnam_1983_a6_solution)) := sorry
0fe13e9d9a270a3e
putnam_2019_b5
abbrev putnam_2019_b5_solution : β„• Γ— β„• := sorry -- ⟨2019, 1010⟩ /-- Let $F_m$ be the $m$th Fibonacci number, defined by $F_1 = F_2 = 1$ and $F_m = F_{m-1} + F_{m-2}$ for all $m \geq 3$. Let $p(x)$ be the polynomial of degree $1008$ such that $p(2n + 1) = F_{2n+1}$ for $n = 0,1,2,\ldots,1008$. Find integers $j$ and $k$ such that $p(2019) = F_j - F_k$. -/ theorem putnam_2019_b5 (F : β„• β†’ β„€) (P : Polynomial ℝ) (hF : βˆ€ x, x β‰₯ 1 β†’ F (x + 2) = F (x + 1) + F x) (F12 : F 1 = 1 ∧ F 2 = 1) (Pdeg: Polynomial.degree P = 1008) (hp: βˆ€ n : β„•, (n ≀ 1008) β†’ P.eval (2 * n + 1 : ℝ) = F (2 * n + 1)) : βˆ€ j k : β„•, (P.eval 2019 = F j - F k) ↔ ⟨j, k⟩ = putnam_2019_b5_solution := sorry
e235992cbe2b77d5
putnam_2009_b5
theorem putnam_2009_b5 (f : ℝ β†’ ℝ) (hfdiff : DifferentiableOn ℝ f (Ioi 1)) (hf : βˆ€ x > 1, deriv f x = (x ^ 2 - (f x) ^ 2) / ((x ^ 2) * ((f x) ^ 2 + 1))) : (Tendsto f atTop atTop) := sorry
51f0ccf451eb184f
putnam_1971_a3
theorem putnam_1971_a3 (a b c : ℝ Γ— ℝ) (R : ℝ) (habclattice : a.1 = round a.1 ∧ a.2 = round a.2 ∧ b.1 = round b.1 ∧ b.2 = round b.2 ∧ c.1 = round c.1 ∧ c.2 = round c.2) (habcneq : a β‰  b ∧ a β‰  c ∧ b β‰  c) (hR : R > 0) (hcircle : βˆƒ C : ℝ Γ— ℝ, √((a.1 - C.1)^2 + (a.2 - C.2)^2) = R ∧ √((b.1 - C.1)^2 + (b.2 - C.2)^2) = R ∧ √((c.1 - C.1)^2 + (c.2 - C.2)^2) = R) : (√((a.1 - b.1)^2 + (a.2 - b.2)^2)) * (√((a.1 - c.1)^2 + (a.2 - c.2)^2)) * (√((b.1 - c.1)^2 + (b.2 - c.2)^2)) β‰₯ 2 * R := sorry
bf796c9fcc314eb9
putnam_2016_a6
abbrev putnam_2016_a6_solution : ℝ := sorry -- 5 / 6 /-- Find the smallest constant $C$ such that for every real polynomial $P(x)$ of degree $3$ that has a root in the interval $[0,1]$, \[ \int_0^1 \left| P(x) \right|\,dx \leq C \max_{x \in [0,1]} \left| P(x) \right|. \] -/ theorem putnam_2016_a6 (p : ℝ β†’ Prop) (hp : βˆ€ c, p c ↔ βˆ€ P : Polynomial ℝ, P.degree = 3 β†’ (βˆƒ x ∈ Icc 0 1, P.eval x = 0) β†’ ∫ x in (0)..1, |P.eval x| ≀ c * (sSup {y | βˆƒ x ∈ Icc 0 1, y = |P.eval x|})) : IsLeast p putnam_2016_a6_solution := sorry
64c13f15bee305cd
putnam_2023_b6
abbrev putnam_2023_b6_solution : β„• β†’ β„€ := sorry -- (fun n : β„• => (-1) ^ (⌈(n / 2 : β„š)βŒ‰β‚Š + 1) * 2 * ⌈(n / 2 : β„š)βŒ‰β‚Š) /-- Let $n$ be a positive integer. For $i$ and $j$ in $\{1,2,\dots,n\}$, let $s(i,j)$ be the number of pairs $(a,b)$ of nonnegative integers satisfying $ai+bj=n$. Let $S$ be the $n$-by-$n$ matrix whose $(i,j)$ entry is $s(i,j)$. For example, when $n=5$, we have $S = \begin{bmatrix} 6 & 3 & 2 & 2 & 2 \\ 3 & 0 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 & 2 \end{bmatrix}$. Compute the determinant of $S$. -/ theorem putnam_2023_b6 (n : β„•) (S : Matrix (Fin n) (Fin n) β„€) (npos : n > 0) (hS : βˆ€ i j : Fin n, S i j = βˆ‘' a : β„•, βˆ‘' b : β„•, if a * (i.1 + 1) + b * (j.1 + 1) = (n : β„€) then 1 else 0) : S.det = putnam_2023_b6_solution n := sorry
03808b9463123954
putnam_2011_a2
abbrev putnam_2011_a2_solution : ℝ := sorry -- 3/2 /-- Let $a_1,a_2,\dots$ and $b_1,b_2,\dots$ be sequences of positive real numbers such that $a_1 = b_1 = 1$ and $b_n = b_{n-1} a_n - 2$ for$n=2,3,\dots$. Assume that the sequence $(b_j)$ is bounded. Prove tha \[ S = \sum_{n=1}^\infty \frac{1}{a_1...a_n} \] converges, and evaluate $S$. -/ theorem putnam_2011_a2 (a b : β„• β†’ ℝ) (habn : βˆ€ n : β„•, a n > 0 ∧ b n > 0) (hab1 : a 0 = 1 ∧ b 0 = 1) (hb : βˆ€ n β‰₯ 1, b n = b (n-1) * a n - 2) (hbnd : βˆƒ B : ℝ, βˆ€ n : β„•, |b n| ≀ B) : Tendsto (fun n => βˆ‘ i : Fin n, 1/(∏ j : Fin (i + 1), (a j))) atTop (𝓝 putnam_2011_a2_solution) := sorry
8ac568b6de75e402
putnam_1984_a2
abbrev putnam_1984_a2_solution : β„š := sorry -- 2 /-- Express $\sum_{k=1}^\infty (6^k/(3^{k+1}-2^{k+1})(3^k-2^k))$ as a rational number. -/ theorem putnam_1984_a2 : βˆ‘' k : Set.Ici 1, (6 ^ (k : β„•) / ((3 ^ ((k : β„•) + 1) - 2 ^ ((k : β„•) + 1)) * (3 ^ (k : β„•) - 2 ^ (k : β„•)))) = putnam_1984_a2_solution := sorry
a21c34f3b53d4fb6
putnam_1969_b4
theorem putnam_1969_b4 (Ξ“ : ℝ β†’ EuclideanSpace ℝ (Fin 2)) --Note: the problem doesn't say what regularity conditions we should impose on `Ξ“` - hopefully continuity is enough. (Ξ“_cts : ContinuousOn Ξ“ (Set.Icc 0 1)) (hΞ“ : eVariationOn Ξ“ (Set.Icc 0 1) = 1) : letI : Module.Oriented ℝ (EuclideanSpace ℝ (Fin 2)) (Fin 2) := ⟨Basis.orientation <| Pi.basisFun _ _⟩ letI : Fact (Module.finrank ℝ (EuclideanSpace ℝ (Fin 2)) = 2) := ⟨finrank_euclideanSpace_fin⟩ βˆƒ (a b c d : EuclideanSpace ℝ (Fin 2)), Ξ“ '' (Set.Icc 0 1) βŠ† convexHull ℝ {a, b, c, d} ∧ dist a b * dist b c = 1/4 ∧ --`abcd` is a rectangle letI Ο€_div_2 := Real.Angle.coe <| Ο€ / 2 (∑ a b c = Ο€_div_2 ∧ ∑ b c d = Ο€_div_2 ∧ ∑ c d a = Ο€_div_2 ∧ ∑ d a b = Ο€_div_2) := sorry
bc5d4f246edbd719
putnam_1994_a3
theorem putnam_1994_a3 (T : Set (EuclideanSpace ℝ (Fin 2))) (hT : T = convexHull ℝ {(WithLp.equiv 2 (EuclideanSpace ℝ (Fin 2))).symm ![0,0], (WithLp.equiv 2 (EuclideanSpace ℝ (Fin 2))).symm ![1,0], (WithLp.equiv 2 (EuclideanSpace ℝ (Fin 2))).symm ![0,1]}) (Tcolors : T β†’ Fin 4) : βˆƒ p q : T, Tcolors p = Tcolors q ∧ dist p.1 q.1 β‰₯ 2 - Real.sqrt 2 := sorry
8095f770b73394ae
putnam_1979_b5
theorem putnam_1979_b5 (C : Set (ℝ Γ— ℝ)) (hC : IsClosed C ∧ Convex ℝ C ∧ (0,0) ∈ C) (hCnint : βˆ€ a b : β„€, (a β‰  0 ∨ b β‰  0) β†’ ((a : ℝ), (b : ℝ)) βˆ‰ C) (hCeven : volume (C ∩ {p : ℝ Γ— ℝ | p.1 β‰₯ 0 ∧ p.2 β‰₯ 0}) = volume (C ∩ {p : ℝ Γ— ℝ | p.1 β‰₯ 0 ∧ p.2 ≀ 0}) ∧ volume (C ∩ {p : ℝ Γ— ℝ | p.1 β‰₯ 0 ∧ p.2 ≀ 0}) = volume (C ∩ {p : ℝ Γ— ℝ | p.1 ≀ 0 ∧ p.2 β‰₯ 0}) ∧ volume (C ∩ {p : ℝ Γ— ℝ | p.1 ≀ 0 ∧ p.2 β‰₯ 0}) = volume (C ∩ {p : ℝ Γ— ℝ | p.1 ≀ 0 ∧ p.2 ≀ 0})) : volume C ≀ 4 := sorry
97f8eddf5979aa2a
putnam_1984_a3
abbrev putnam_1984_a3_solution : MvPolynomial (Fin 3) ℝ := sorry -- (MvPolynomial.X 2) ^ 2 * ((MvPolynomial.X 0) ^ 2 - (MvPolynomial.X 1) ^ 2) /-- Let $n$ be a positive integer. Let $a,b,x$ be real numbers, with $a \neq b$, and let $M_n$ denote the $2n \times 2n$ matrix whose $(i,j)$ entry $m_{ij}$ is given by \[ m_{ij}=\begin{cases} x & \text{if }i=j, \\ a & \text{if }i \neq j\text{ and }i+j\text{ is even}, \\ b & \text{if }i \neq j\text{ and }i+j\text{ is odd}. \end{cases} \] Thus, for example, $M_2=\begin{pmatrix} x & b & a & b \\ b & x & b & a \\ a & b & x & b \\ b & a & b & x \end{pmatrix}$. Express $\lim_{x \to a} \det M_n/(x-a)^{2n-2}$ as a polynomial in $a$, $b$, and $n$, where $\det M_n$ denotes the determinant of $M_n$. -/ theorem putnam_1984_a3 (n : β„•) (a b : ℝ) (Mn : ℝ β†’ Matrix (Fin (2 * n)) (Fin (2 * n)) ℝ) (polyabn : Fin 3 β†’ ℝ) (npos : n > 0) (aneb : a β‰  b) (hMn : Mn = fun x : ℝ => fun i j : Fin (2 * n) => if i = j then x else if Even (i.1 + j.1) then a else b) (hpolyabn : polyabn 0 = a ∧ polyabn 1 = b ∧ polyabn 2 = n) : Tendsto (fun x : ℝ => (Mn x).det / (x - a) ^ (2 * n - 2)) (𝓝[β‰ ] a) (𝓝 (MvPolynomial.eval polyabn putnam_1984_a3_solution)) := sorry
769a67dce5329b85
putnam_1969_b5
theorem putnam_1969_b5 (a : β„• β†’ ℝ) (ha : StrictMono a ∧ (βˆ€ x : β„•, a x > 0)) (hinvasum : βˆƒ C : ℝ, Tendsto (fun n => βˆ‘ i : Fin n, 1/(a i)) atTop (𝓝 C)) (k : ℝ β†’ β„•) (hk : k = fun x => {n | a n ≀ x}.ncard) : Tendsto (fun t => (k t)/t) atTop (𝓝 0) := sorry
f1e82ccf9dbe473a
putnam_1966_a6
theorem putnam_1966_a6 (a : β„• β†’ (β„• β†’ ℝ)) (ha : βˆ€ n β‰₯ 1, a n n = n ∧ βˆ€ m β‰₯ 1, m < n β†’ a n m = m * Real.sqrt (1 + a n (m + 1))) : Tendsto (fun n => a n 1) atTop (𝓝 3) := sorry
c29d95fe5816eb66
putnam_1976_a6
theorem putnam_1976_a6 (f : ℝ β†’ ℝ) (hfdiff : ContDiff ℝ 2 f) (hfbd : βˆ€ x : ℝ, |f x| ≀ 1) (hf0 : (f 0)^2 + (deriv f 0)^2 = 4) : βˆƒ y : ℝ, (f y) + (iteratedDeriv 2 f y) = 0 := sorry
8bd245da851bf6ee
putnam_2001_a3
abbrev putnam_2001_a3_solution : Set β„€ := sorry -- {m : β„€ | βˆƒ k : β„€, k^2 = m ∨ 2*k^2 = m} /-- For each integer $m$, consider the polynomial \[P_m(x)=x^4-(2m+4)x^2+(m-2)^2.\] For what values of $m$ is $P_m(x)$ the product of two non-constant polynomials with integer coefficients? -/ theorem putnam_2001_a3 (P : β„€ β†’ Polynomial β„€) (hP : P = fun m : β„€ => (Polynomial.X)^4 - (Polynomial.C (2*m + 4))*(Polynomial.X)^2 + Polynomial.C ((m - 2)^2)) : {m : β„€ | βˆƒ a b, P m = a * b ∧ (βˆƒ n ∈ Ici 1, a.coeff n β‰  0) ∧ (βˆƒ n ∈ Ici 1, b.coeff n β‰  0)} = putnam_2001_a3_solution := sorry
d7bc04f953f7f94a
putnam_2011_a3
abbrev putnam_2011_a3_solution : ℝ Γ— ℝ := sorry -- (-1, 2 / Real.pi) /-- Find a real number $c$ and a positive number $L$ for which $\lim_{r \to \infty} \frac{r^c \int_0^{\pi/2} x^r\sin x\,dx}{\int_0^{\pi/2} x^r\cos x\,dx}=L$. -/ theorem putnam_2011_a3 : putnam_2011_a3_solution.2 > 0 ∧ Tendsto (fun r : ℝ => (r ^ putnam_2011_a3_solution.1 * ∫ x in Set.Ioo 0 (Real.pi / 2), x ^ r * Real.sin x) / (∫ x in Set.Ioo 0 (Real.pi / 2), x ^ r * Real.cos x)) atTop (𝓝 putnam_2011_a3_solution.2) := sorry
5ecd38afbff0e836
putnam_2024_b3
theorem putnam_2024_b3 (r : β„•+ β†’ ℝ) (r_def : StrictMono r ∧ (βˆ€ x ∈ Set.Ioo 0 (r 1), Real.tan x β‰  x) ∧ βˆ€ n, 0 < r n ∧ Real.tan (r n) = r n ∧ βˆ€ x, x ∈ Set.Ioo (r n) (r (n + 1)) β†’ Real.tan x β‰  x) (n : β„•+) : r (n + 1) - r n - Real.pi ∈ Set.Ioo (0 : ℝ) (1 / ((n ^ 2 + n) * Real.pi)) := sorry
880b0097942f29d8
putnam_1971_a2
abbrev putnam_1971_a2_solution : Set (Polynomial ℝ) := sorry -- {Polynomial.X} /-- Determine all polynomials $P(x)$ such that $P(x^2 + 1) = (P(x))^2 + 1$ and $P(0) = 0$. -/ theorem putnam_1971_a2 (P : Polynomial ℝ) : (P.eval 0 = 0 ∧ (βˆ€ x : ℝ, P.eval (x^2 + 1) = (P.eval x)^2 + 1)) ↔ P ∈ putnam_1971_a2_solution := sorry
ef7e5e3af5a64a4c
putnam_2019_b4
abbrev putnam_2019_b4_solution : ℝ := sorry -- 2 * Real.log 2 - 1 / 2 /-- Let $\mathcal{F}$ be the set of functions $f(x,y)$ that are twice continuously differentiable for $x \geq 1,y \geq 1$ and that satisfy the following two equations (where subscripts denote partial derivatives): \begin{gather*} xf_x+yf_y=xy\ln(xy), \\ x^2f_{xx}+y^2f_{yy}=xy. \end{gather*} For each $f \in \mathcal{F}$, let $m(f)=\min_{s \geq 1} (f(s+1,s+1)-f(s+1,s)-f(s,s+1)+f(s,s))$. Determine $m(f)$, and show that it is independent of the choice of $f$. -/ theorem putnam_2019_b4 (f : (Fin 2 β†’ ℝ) β†’ ℝ) (vec : ℝ β†’ ℝ β†’ (Fin 2 β†’ ℝ)) (fdiff : ContDiff ℝ 2 f) (hvec : βˆ€ x y : ℝ, (vec x y) 0 = x ∧ (vec x y 1) = y) (feq1 : βˆ€ x β‰₯ 1, βˆ€ y β‰₯ 1, x * deriv (fun x' : ℝ => f (vec x' y)) x + y * deriv (fun y' : ℝ => f (vec x y')) y = x * y * Real.log (x * y)) (feq2 : βˆ€ x β‰₯ 1, βˆ€ y β‰₯ 1, x ^ 2 * iteratedDeriv 2 (fun x' : ℝ => f (vec x' y)) x + y ^ 2 * iteratedDeriv 2 (fun y' : ℝ => f (vec x y')) y = x * y) : sInf {f (vec (s + 1) (s + 1)) - f (vec (s + 1) s) - f (vec s (s + 1)) + f (vec s s) | s β‰₯ 1} = putnam_2019_b4_solution := sorry
ea66af1f92c8b60d
putnam_2009_b4
abbrev putnam_2009_b4_solution : β„• := sorry -- 2020050 /-- Say that a polynomial with real coefficients in two variables, $x,y$, is \emph{balanced} if the average value of the polynomial on each circle centered at the origin is $0$. The balanced polynomials of degree at most $2009$ form a vector space $V$ over $\mathbb{R}$. Find the dimension of $V$. -/ theorem putnam_2009_b4 (IsBalanced : MvPolynomial (Fin 2) ℝ β†’ Prop) (IsBalanced_def : βˆ€ P, IsBalanced P ↔ βˆ€ r > 0, (∫ t in (0 : ℝ)..(2 * Ο€), eval ![r * cos t, r * sin t] P) / (2 * Ο€ * r) = 0) (V : Submodule ℝ (MvPolynomial (Fin 2) ℝ)) (V_def : βˆ€ P, P ∈ V ↔ IsBalanced P ∧ P.totalDegree ≀ 2009) : Module.rank ℝ V = putnam_2009_b4_solution := sorry
04f8f74bb4326dc7
putnam_1990_a1
abbrev putnam_1990_a1_solution : (β„• β†’ β„€) Γ— (β„• β†’ β„€) := sorry -- (fun n : β„• => (n)!, fun n : β„• => 2 ^ n) /-- Let $T_0=2,T_1=3,T_2=6$, and for $n \geq 3$, $T_n=(n+4)T_{n-1}-4nT_{n-2}+(4n-8)T_{n-3}$. The first few terms are $2,3,6,14,40,152,784,5168,40576$. Find, with proof, a formula for $T_n$ of the form $T_n=A_n+B_n$, where $\{A_n\}$ and $\{B_n\}$ are well-known sequences. -/ theorem putnam_1990_a1 (T : β„• β†’ β„€) (hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6) (hTn : βˆ€ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) : T = putnam_1990_a1_solution.1 + putnam_1990_a1_solution.2 := sorry
d2d1dd1ab9d17c87
putnam_1962_a4
theorem putnam_1962_a4 (f : ℝ β†’ ℝ) (a b : ℝ) (hdiff : Differentiable ℝ f ∧ (Differentiable ℝ (deriv f))) (hfabs : βˆ€ x ∈ Set.Icc a b, |f x| ≀ 1) (hfppabs : βˆ€ x ∈ Set.Icc a b, |(iteratedDeriv 2 f) x| ≀ 1) (hlen2 : b - a β‰₯ 2) : βˆ€ x ∈ Set.Icc a b, |(iteratedDeriv 1 f) x| ≀ 2 := sorry
07e44426c898f47e
putnam_2015_a1
theorem putnam_2015_a1 (hyperbola : Set (Fin 2 β†’ ℝ)) (hhyperbola : hyperbola = {p | p 1 = 1 / p 0 ∧ p 0 > 0}) (A B P : Fin 2 β†’ ℝ) (PPline : (Fin 2 β†’ ℝ) β†’ (Fin 2 β†’ ℝ) β†’ (ℝ β†’ ℝ)) (hAB : A ∈ hyperbola ∧ B ∈ hyperbola ∧ A 0 < B 0) (hP : P ∈ hyperbola ∧ A 0 < P 0 ∧ P 0 < B 0 ∧ (βˆ€ P', (P' ∈ hyperbola ∧ A 0 < P' 0 ∧ P' 0 < B 0) β†’ MeasureTheory.volume (convexHull ℝ {A, P', B}) ≀ MeasureTheory.volume (convexHull ℝ {A, P, B}))) (hPPline : βˆ€ P1 P2, P1 0 β‰  P2 0 β†’ PPline P1 P2 = (fun x : ℝ => ((P2 1 - P1 1) / (P2 0 - P1 0)) * (x - P1 0) + P1 1)) : ∫ x in Set.Ioo (A 0) (P 0), (PPline A P) x - 1 / x = ∫ x in Set.Ioo (P 0) (B 0), (PPline P B) x - 1 / x := sorry
2b4e8b85684cc118
putnam_2005_a1
theorem putnam_2005_a1 : βˆ€ n : β„€, n > 0 β†’ (βˆƒ k : β„•, βˆƒ a : Fin k β†’ Fin 2 β†’ β„•, n = βˆ‘ i : Fin k, 2^(a i 0)*3^(a i 1) ∧ (βˆ€ i j : Fin k, i β‰  j β†’ Β¬(2^(a i 0)*3^(a i 1) ∣ 2^(a j 0)*3^(a j 1)))) := sorry
98d9d51fd1a5616b
putnam_1998_b6
theorem putnam_1998_b6 : βˆ€ a b c : β„€, βˆƒ n : β„€, n > 0 ∧ Β¬(βˆƒ k : β„€, k = Real.sqrt (n^3 + a * n^2 + b * n + c)) := sorry
2f4a4fab61d51fc8
putnam_2020_b1
abbrev putnam_2020_b1_solution : β„• := sorry -- 1990 /-- For a positive integer $n$, define $d(n)$ to be the sum of the digits of $n$ when written in binary (for example, $d(13) = 1+1+0+1=3)$. Let \[ S = \sum_{k=1}^{2020} (-1)^{d(k)} k^3. \] Determine $S$ modulo 2020. -/ theorem putnam_2020_b1 (d : β„• β†’ β„•) (S : β„€) (hd : d = fun n : β„• => βˆ‘ i : Fin (Nat.digits 2 n).length, (Nat.digits 2 n)[i]!) (hS : S = βˆ‘ k : Icc 1 2020, ((-1 : β„€)^(d k))*(k : β„€)^3) : S % 2020 = putnam_2020_b1_solution := sorry
bfe166d863d570e9
putnam_1988_b6
theorem putnam_1988_b6 (trinums : Set β„€) (htrinums : trinums = {t : β„€ | βˆƒ n : β„€, t β‰₯ 0 ∧ t = (n * (n + 1)) / 2}) : {(a, b) : β„€ Γ— β„€ | βˆ€ t > 0, (a * t + b) ∈ trinums ↔ t ∈ trinums}.encard = ⊀ := sorry
292629636c97a7a0
putnam_2012_a5
abbrev putnam_2012_a5_solution : Set (β„• Γ— β„•) := sorry -- {q | let ⟨n, _⟩ := q; n = 1} βˆͺ {(2,2)} /-- Let $\FF_p$ denote the field of integers modulo a prime $p$, and let $n$ be a positive integer. Let $v$ be a fixed vector in $\FF_p^n$, let $M$ be an $n \times n$ matrix with entries of $\FF_p$, and define $G: \FF_p^n \to \FF_p^n$ by $G(x) = v + Mx$. Let $G^{(k)}$ denote the $k$-fold composition of $G$ with itself, that is, $G^{(1)}(x) = G(x)$ and $G^{(k+1)}(x) = G(G^{(k)}(x))$. Determine all pairs $p, n$ for which there exist $v$ and $M$ such that the $p^n$ vectors $G^{(k)}(0)$, $k=1,2,\dots,p^n$ are distinct. -/ theorem putnam_2012_a5 (n p : β„•) (hn : n > 0) (hp : Nat.Prime p) {F : Type*} [Field F] [Fintype F] (hK : Fintype.card F = p) (G : Matrix (Fin n) (Fin n) F β†’ (Fin n β†’ F) β†’ (Fin n β†’ F) β†’ (Fin n β†’ F)) (hG : βˆ€ M v x, G M v x = v + mulVec M x) : (n, p) ∈ putnam_2012_a5_solution ↔ βˆƒα΅‰ (M : Matrix (Fin n) (Fin n) F) (v : (Fin n β†’ F)), Β¬(βˆƒ i j : Finset.range (p^n), i β‰  j ∧ (G M v)^[i + 1] 0 = (G M v)^[j + 1] 0) := sorry
5b539c72140f54b9
putnam_2002_a5
theorem putnam_2002_a5 (a : β„• β†’ β„š) (ha : a 0 = 1 ∧ βˆ€ n : β„•, a (2*n + 1) = a n ∧ a (2*n + 2) = a n + a (n + 1)) : βˆ€ q : β„š, q > 0 β†’ q ∈ {a (n - 1) / a n | n ∈ Ici 1} := sorry
b1c38066bbd001eb
putnam_1987_a5
abbrev putnam_1987_a5_solution : Prop := sorry -- False /-- Let $\vec{G}(x,y)=\left(\frac{-y}{x^2+4y^2},\frac{x}{x^2+4y^2},0\right)$. Prove or disprove that there is a vector-valued function $\vec{F}(x,y,z)=(M(x,y,z),N(x,y,z),P(x,y,z))$ with the following properties: \begin{enumerate} \item[(i)] $M$, $N$, $P$ have continuous partial derivatives for all $(x,y,z) \neq (0,0,0)$; \item[(ii)] $\text{Curl}\,\vec{F}=\vec{0}$ for all $(x,y,z) \neq (0,0,0)$; \item[(iii)] $\vec{F}(x,y,0)=\vec{G}(x,y)$. \end{enumerate} -/ theorem putnam_1987_a5 (curl : ((Fin 3 β†’ ℝ) β†’ (Fin 3 β†’ ℝ)) β†’ ((Fin 3 β†’ ℝ) β†’ (Fin 3 β†’ ℝ))) (curl_def : βˆ€ f x, curl f x = ![ fderiv ℝ f x (Pi.single 1 1) 2 - fderiv ℝ f x (Pi.single 2 1) 1, fderiv ℝ f x (Pi.single 2 1) 0 - fderiv ℝ f x (Pi.single 0 1) 2, fderiv ℝ f x (Pi.single 0 1) 1 - fderiv ℝ f x (Pi.single 1 1) 0]) (G : (Fin 2 β†’ ℝ) β†’ (Fin 3 β†’ ℝ)) (G_def : βˆ€ x y, G ![x, y] = ![(-y / (x ^ 2 + 4 * y ^ 2)), (x / (x ^ 2 + 4 * y ^ 2)), 0]) : (βˆƒ F : (Fin 3 β†’ ℝ) β†’ (Fin 3 β†’ ℝ), ContDiffOn ℝ 1 F {v | v β‰  ![0,0,0]} ∧ (βˆ€ x, x β‰  0 β†’ curl F x = 0) ∧ βˆ€ x y, F ![x, y, 0] = G ![x, y]) ↔ putnam_1987_a5_solution := sorry
42c4ce572b9a6ea1
putnam_1997_a5
abbrev putnam_1997_a5_solution : Prop := sorry -- True /-- Let $N_n$ denote the number of ordered $n$-tuples of positive integers $(a_1,a_2,\ldots,a_n)$ such that $1/a_1 + 1/a_2 +\ldots + 1/a_n=1$. Determine whether $N_{10}$ is even or odd. -/ theorem putnam_1997_a5 (N : (n : β„•+) β†’ Set (Fin n β†’ β„•+)) (hN : N = fun (n : β„•+) => {t : Fin n β†’ β„•+ | (βˆ€ i j : Fin n, i < j β†’ t i <= t j) ∧ (βˆ‘ i : Fin n, (1 : ℝ)/(t i) = 1) }) : Odd (N 10).ncard ↔ putnam_1997_a5_solution := sorry
eaa9f009fdd7db7b
putnam_1996_a4
theorem putnam_1996_a4 (A : Type*) [Finite A] (S : Set (A Γ— A Γ— A)) (hSdistinct : βˆ€ a b c : A, ⟨a, b, c⟩ ∈ S β†’ a β‰  b ∧ b β‰  c ∧ a β‰  c) (hS1 : βˆ€ a b c : A, ⟨a, b, c⟩ ∈ S ↔ ⟨b, c, a⟩ ∈ S) (hS2 : βˆ€ a b c : A, a β‰  c β†’ (⟨a, b, c⟩ ∈ S ↔ ⟨c, b, a⟩ βˆ‰ S)) (hS3 : βˆ€ a b c d : A, (⟨a, b, c⟩ ∈ S ∧ ⟨c, d, a⟩ ∈ S) ↔ (⟨b,c,d⟩ ∈ S ∧ ⟨d,a,b⟩ ∈ S)) : βˆƒ g : A β†’ ℝ, Injective g ∧ (βˆ€ a b c : A, g a < g b ∧ g b < g c β†’ ⟨a,b,c⟩ ∈ S) := sorry
f2696344c68b6e93
putnam_1986_a4
abbrev putnam_1986_a4_solution : β„š Γ— β„š Γ— β„š Γ— β„š Γ— β„š Γ— β„š Γ— β„š := sorry -- (1, 4, 2, 3, -4, 2, 1) /-- A \emph{transversal} of an $n\times n$ matrix $A$ consists of $n$ entries of $A$, no two in the same row or column. Let $f(n)$ be the number of $n \times n$ matrices $A$ satisfying the following two conditions: \begin{enumerate} \item[(a)] Each entry $\alpha_{i,j}$ of $A$ is in the set $\{-1,0,1\}$. \item[(b)] The sum of the $n$ entries of a transversal is the same for all transversals of $A$. \end{enumerate} An example of such a matrix $A$ is \[ A = \left( \begin{array}{ccc} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array} \right). \] Determine with proof a formula for $f(n)$ of the form \[ f(n) = a_1 b_1^n + a_2 b_2^n + a_3 b_3^n + a_4, \] where the $a_i$'s and $b_i$'s are rational numbers. -/ theorem putnam_1986_a4 (f : β„• β†’ β„•) (hf : f = fun n ↦ Set.ncard {A : Matrix (Fin n) (Fin n) β„€ | (βˆ€ i j : Fin n, A i j ∈ ({-1, 0, 1} : Set β„€)) ∧ βˆƒ S : β„€, βˆ€ Ο• : Perm (Fin n), βˆ‘ i : Fin n, A i (Ο• i) = S}) : let (a1, b1, a2, b2, a3, b3, a4) := putnam_1986_a4_solution; (βˆ€ n > 0, f n = a1 * b1 ^ n + a2 * b2 ^ n + a3 * b3 ^ n + a4) := sorry
80f272a45d7a05bf
putnam_2003_a4
theorem putnam_2003_a4 (a b c A B C : ℝ) (aAne0 : a β‰  0 ∧ A β‰  0) (hle : βˆ€ x : ℝ, |a * x ^ 2 + b * x + c| ≀ |A * x ^ 2 + B * x + C|) : |b ^ 2 - 4 * a * c| ≀ |B ^ 2 - 4 * A * C| := sorry
5e1afdc6fc666a8b
putnam_2013_a4
theorem putnam_2013_a4 (n k : β„•) (circle : Fin n β†’ Fin 2) (Z N : Fin n Γ— Fin (n + 1) β†’ β„€) (ws : Fin k β†’ Fin n Γ— Fin (n + 1)) (Zsum Nsum : β„€) (npos : n β‰₯ 1) (kpos : k β‰₯ 1) (hZ : βˆ€ w, Z w = βˆ‘ l : {x : Fin n | x < w.2}, if (circle (w.1 + l) = 0) then 1 else 0) (hN : βˆ€ w, N w = βˆ‘ l : {x : Fin n | x < w.2}, if (circle (w.1 + l) = 1) then 1 else 0) (Zle1 : βˆ€ w w', w.2 = w'.2 β†’ |(Z w : β„€) - Z w'| ≀ 1) (hZsum : Zsum = ((1 : ℝ) / k) * βˆ‘ j : Fin k, Z (ws j)) (hNsum : Nsum = ((1 : ℝ) / k) * βˆ‘ j : Fin k, N (ws j)) : βˆƒ w, Z w = Zsum ∧ N w = Nsum := sorry
204a63ef798410c6
putnam_1964_a1
theorem putnam_1964_a1 (A : Finset (EuclideanSpace ℝ (Fin 2))) (hAcard : A.card = 6) (dists : Set ℝ) (hdists : dists = {d : ℝ | βˆƒ a b : EuclideanSpace ℝ (Fin 2), a ∈ A ∧ b ∈ A ∧ a β‰  b ∧ d = dist a b}) : (sSup dists / sInf dists β‰₯ Real.sqrt 3) := sorry
ffe2cfb1445dd5cb
putnam_1974_a1
abbrev putnam_1974_a1_solution : β„• := sorry -- 11 /-- Call a set of positive integers 'conspiratorial' if no three of them are pairwise relatively prime. What is the largest number of elements in any conspiratorial subset of the integers 1 through 16? -/ theorem putnam_1974_a1 (conspiratorial : Set β„€ β†’ Prop) (hconspiratorial : βˆ€ S, conspiratorial S ↔ βˆ€ a ∈ S, βˆ€ b ∈ S, βˆ€ c ∈ S, (a > 0 ∧ b > 0 ∧ c > 0) ∧ ((a β‰  b ∧ b β‰  c ∧ a β‰  c) β†’ (Int.gcd a b > 1 ∨ Int.gcd b c > 1 ∨ Int.gcd a c > 1))) : IsGreatest {k | βˆƒ S, S βŠ† Icc 1 16 ∧ conspiratorial S ∧ S.encard = k} putnam_1974_a1_solution := sorry
60d08a315d484233
putnam_2010_a2
abbrev putnam_2010_a2_solution : Set (ℝ β†’ ℝ) := sorry -- {f : ℝ β†’ ℝ | βˆƒ c d : ℝ, βˆ€ x : ℝ, f x = c*x + d} /-- Find all differentiable functions $f:\mathbb{R} \to \mathbb{R}$ such that \[ f'(x) = \frac{f(x+n)-f(x)}{n} \] for all real numbers $x$ and all positive integers $n$. -/ theorem putnam_2010_a2 : {f : ℝ β†’ ℝ | Differentiable ℝ f ∧ βˆ€ x : ℝ, βˆ€ n : β„€, n > 0 β†’ deriv f x = (f (x + n) - f x)/n} = putnam_2010_a2_solution := sorry
4d77a7aef547218a
putnam_2000_a2
theorem putnam_2000_a2 : βˆ€ n : β„•, βˆƒ N : β„€, βˆƒ i : Fin 6 β†’ β„•, N > n ∧ N = (i 0)^2 + (i 1)^2 ∧ N + 1 = (i 2)^2 + (i 3)^2 ∧ N + 2 = (i 4)^2 + (i 5)^2 := sorry
fab592829ad84d5d
putnam_2022_b6
abbrev putnam_2022_b6_solution : Set (Set.Ioi (0 : ℝ) β†’ Set.Ioi (0 : ℝ)) := sorry -- {f : Set.Ioi (0 : ℝ) β†’ Set.Ioi (0 : ℝ) | βˆƒ c : ℝ, c β‰₯ 0 ∧ βˆ€ x : Set.Ioi (0 : ℝ), f x = 1 / (1 + c * x)} /-- Find all continuous functions $f:\mathbb{R}^+ \to \mathbb{R}^+$ such that $f(xf(y))+f(yf(x))=1+f(x+y)$ for all $x,y>0$. -/ theorem putnam_2022_b6 (f : Set.Ioi (0 : ℝ) β†’ Set.Ioi (0 : ℝ)) (hf : Continuous f) : (βˆƒ fr : ℝ β†’ ℝ, (βˆ€ x : Set.Ioi (0 : ℝ), fr x = f x) ∧ (βˆ€ x y : Set.Ioi (0 : ℝ), fr (x * fr y) + fr (y * fr x) = 1 + fr (x + y))) ↔ f ∈ putnam_2022_b6_solution := sorry
d2e1a45a5745ed22
putnam_1968_b4
theorem putnam_1968_b4 (f : ℝ β†’ ℝ) (hf : Continuous f ∧ βˆƒ r : ℝ, Tendsto (fun y => ∫ x in ball 0 y, f x) atTop (𝓝 r)) : βˆƒ r : ℝ, Tendsto (fun y => ∫ x in ball 0 y, f (x - 1/x)) atTop (𝓝 r) ∧ Tendsto (fun y => ∫ x in ball 0 y, f x) atTop (𝓝 r) := sorry
a81fc2bfcca1b679
putnam_1978_b4
theorem putnam_1978_b4 : βˆ€ N : ℝ, βˆƒ a b c d : β„€, a > N ∧ b > N ∧ c > N ∧ d > N ∧ a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = a * b * c + a * b * d + a * c * d + b * c * d := sorry
0c6ba2a0798a0c89
putnam_1995_a2
abbrev putnam_1995_a2_solution : Set (ℝ Γ— ℝ) := sorry -- {x | let ⟨a,b⟩ := x; a = b} /-- For what pairs $(a,b)$ of positive real numbers does the improper integral \[ \int_{b}^{\infty} \left( \sqrt{\sqrt{x+a}-\sqrt{x}} - \sqrt{\sqrt{x}-\sqrt{x-b}} \right)\,dx \] converge? -/ theorem putnam_1995_a2 (habconv : (ℝ Γ— ℝ) β†’ Prop) (habconv_def : habconv = fun ⟨a,b⟩ => βˆƒ limit : ℝ, Tendsto (fun t : ℝ => ∫ x in (Set.Icc b t), (sqrt (sqrt (x + a) - sqrt x) - sqrt (sqrt x - sqrt (x - b)))) atTop (𝓝 limit)) : βˆ€ ab : ℝ Γ— ℝ, ab.1 > 0 ∧ ab.2 > 0 β†’ (habconv ab ↔ ab ∈ putnam_1995_a2_solution) := sorry
552b8614132406f8
putnam_2008_b5
abbrev putnam_2008_b5_solution : Set (ℝ β†’ ℝ) := sorry -- {fun (x : ℝ) => x + n | n : β„€} βˆͺ {fun (x : ℝ) => -x + n | n : β„€} /-- Find all continuously differentiable functions f : \mathbb{R} \to \mathbb{R} such that for every rational number $q$, the number $f(q)$ is rational and has the same denominator as $q$. -/ theorem putnam_2008_b5 (fqsat : (ℝ β†’ ℝ) β†’ β„š β†’ Prop) (hfqsat : βˆ€ f q, fqsat f q ↔ ContDiff ℝ 1 f ∧ (βˆƒ p : β„š, p = f q ∧ p.den = q.den)) : βˆ€ f : (ℝ β†’ ℝ), (βˆ€ q : β„š, fqsat f q) ↔ f ∈ putnam_2008_b5_solution := sorry
14d6bf155986a7fe
putnam_2018_b5
theorem putnam_2018_b5 (f : (Fin 2 β†’ ℝ) β†’ (Fin 2 β†’ ℝ)) (h₁ : ContDiff ℝ 1 f) (hβ‚‚ : βˆ€ x i j, 0 < fderiv ℝ f x (Pi.single i 1) j) (h₃ : βˆ€ x, 0 < fderiv ℝ f x ![1, 0] 0 * fderiv ℝ f x ![0, 1] 1 - (1 / 4) * (fderiv ℝ f x ![1, 0] 1 + fderiv ℝ f x ![0, 1] 0) ^ 2) : Injective f := sorry
67968da07222090a
putnam_1982_a6
abbrev putnam_1982_a6_solution : Prop := sorry -- False /-- Let $b$ be a bijection from the positive integers to the positive integers. Also, let $x_1, x_2, x_3, \dots$ be an infinite sequence of real numbers with the following properties: \begin{enumerate} \item $|x_n|$ is a strictly decreasing function of $n$; \item $\lim_{n \rightarrow \infty} |b(n) - n| \cdot |x_n| = 0$; \item $\lim_{n \rightarrow \infty}\sum_{k = 1}^{n} x_k = 1$. \end{enumerate} Prove or disprove: these conditions imply that $$\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} x_{b(k)} = 1.$$ -/ theorem putnam_1982_a6 : (βˆ€ b : β„• β†’ β„•, βˆ€ x : β„• β†’ ℝ, BijOn b (Ici 1) (Ici 1) β†’ StrictAntiOn (fun n : β„• => |x n|) (Ici 1) β†’ Tendsto (fun n : β„• => |b n - (n : β„€)| * |x n|) atTop (𝓝 0) β†’ Tendsto (fun n : β„• => βˆ‘ k in Finset.Icc 1 n, x k) atTop (𝓝 1) β†’ Tendsto (fun n : β„• => βˆ‘ k in Finset.Icc 1 n, x (b k)) atTop (𝓝 1)) ↔ putnam_1982_a6_solution := sorry
2537ff48a39275c4
putnam_1970_a3
abbrev putnam_1970_a3_solution : β„• Γ— β„• := sorry -- (3, 1444) /-- Find the length of the longest possible sequence of equal nonzero digits (in base 10) in which a perfect square can terminate. Also, find the smallest square that attains this length. -/ theorem putnam_1970_a3 (L : β„• β†’ β„•) (hL : βˆ€ n : β„•, L n ≀ (Nat.digits 10 n).length ∧ (βˆ€ k : β„•, k < L n β†’ (Nat.digits 10 n)[k]! = (Nat.digits 10 n)[0]!) ∧ (L n β‰  (Nat.digits 10 n).length β†’ (Nat.digits 10 n)[L n]! β‰  (Nat.digits 10 n)[0]!)) : (βˆƒ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 ∧ L (n^2) = putnam_1970_a3_solution.1) ∧ (βˆ€ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 β†’ L (n^2) ≀ putnam_1970_a3_solution.1) ∧ (βˆƒ m : β„•, m^2 = putnam_1970_a3_solution.2) ∧ L (putnam_1970_a3_solution.2) = putnam_1970_a3_solution.1 ∧ (Nat.digits 10 putnam_1970_a3_solution.2)[0]! β‰  0 ∧ βˆ€ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 ∧ L (n^2) = putnam_1970_a3_solution.1 β†’ n^2 β‰₯ putnam_1970_a3_solution.2 := sorry
0962cb2520b663af
putnam_1999_a1
abbrev putnam_1999_a1_solution : Prop := sorry -- True /-- Find polynomials $f(x)$,$g(x)$, and $h(x)$, if they exist, such that for all $x$, \[|f(x)|-|g(x)|+h(x) = \begin{cases} -1 & \mbox{if $x<-1$} \\3x+2 & \mbox{if $-1 \leq x \leq 0$} \\-2x+2 & \mbox{if $x>0$.}\end{cases}\]? -/ theorem putnam_1999_a1 : putnam_1999_a1_solution ↔ βˆƒ f g h : Polynomial ℝ, βˆ€ x : ℝ, |f.eval x| - |g.eval x| + h.eval x = if x < -1 then -1 else (if (x ≀ 0) then 3 * x + 2 else -2 * x + 2) := sorry
dede9d9b05cb2b93
putnam_1989_a1
abbrev putnam_1989_a1_solution : β„•βˆž := sorry -- 1 /-- How many primes among the positive integers, written as usual in base $10$, are alternating $1$'s and $0$'s, beginning and ending with $1$? -/ theorem putnam_1989_a1 (pdigalt : List β„• β†’ Prop) (hpdigalt : βˆ€ l, pdigalt l ↔ Odd l.length ∧ (βˆ€ i, l.get i = if Even (i : β„•) then 1 else 0)) : {p : β„• | p.Prime ∧ pdigalt (Nat.digits 10 p)}.encard = putnam_1989_a1_solution := sorry
a43b50a5a8781215
putnam_2021_a6
abbrev putnam_2021_a6_solution : Prop := sorry -- True /-- Let $P(x)$ be a polynomial whose coefficients are all either $0$ or $1$. Suppose that $P(x)$ can be written as a product of two nonconstant polynomials with integer coefficients. Does it follow that $P(2)$ is a composite integer? -/ theorem putnam_2021_a6 : (βˆ€ P, (βˆ€ n : β„•, P.coeff n = 0 ∨ P.coeff n = 1) β†’ (βˆƒ Q R : Polynomial β„€, Q.degree > 0 ∧ R.degree > 0 ∧ P = Q * R) β†’ (P.eval 2 β‰  0 ∧ P.eval 2 β‰  1 ∧ Β¬Prime (P.eval 2))) ↔ putnam_2021_a6_solution := sorry
351bd7c586a5a890
putnam_2013_b2
abbrev putnam_2013_b2_solution : ℝ := sorry -- 3 /-- Let $C = \bigcup_{N=1}^\infty C_N$, where $C_N$ denotes the set of those `cosine polynomials' of the form \[ f(x) = 1 + \sum_{n=1}^N a_n \cos(2 \pi n x) \] for which: \begin{enumerate} \item[(i)] $f(x) \geq 0$ for all real $x$, and \item[(ii)] $a_n = 0$ whenever $n$ is a multiple of $3$. \end{enumerate} Determine the maximum value of $f(0)$ as $f$ ranges through $C$, and prove that this maximum is attained. -/ theorem putnam_2013_b2 (CN : β„• β†’ Set (ℝ β†’ ℝ)) (hCN : βˆ€ N : β„•, CN N = {f : ℝ β†’ ℝ | (βˆ€ x : ℝ, f x β‰₯ 0) ∧ βˆƒ a : List ℝ, a.length = N + 1 ∧ (βˆ€ n : Fin (N + 1), 3 ∣ (n : β„•) β†’ a[n]! = 0) ∧ βˆ€ x : ℝ, f x = 1 + βˆ‘ n in Finset.Icc 1 N, a[(n : β„•)]! * Real.cos (2*Real.pi*n*x)}) : IsGreatest {f 0 | f ∈ ⋃ N ∈ Ici 1, CN N} putnam_2013_b2_solution := sorry
58912708f948fe95
putnam_2003_b2
theorem putnam_2003_b2 (n : β„•) (hn : n > 0) (seq : β„• β†’ β„• β†’ β„š) (hinit : βˆ€ j ∈ Icc 1 n, seq 0 j = 1 / j) (havg : βˆ€α΅‰ (k ∈ Icc 1 (n - 1)) (j ∈ Icc 1 (n - k)), seq k j = (seq (k - 1) j + seq (k - 1) (j + 1)) / 2) : (seq (n - 1) 1 < 2 / n) := sorry
cae37405a698fc81
putnam_1986_b2
abbrev putnam_1986_b2_solution : Finset (β„‚ Γ— β„‚ Γ— β„‚) := sorry -- {(0, 0, 0), (0, -1, 1), (1, 0, -1), (-1, 1, 0)} /-- Prove that there are only a finite number of possibilities for the ordered triple $T=(x-y,y-z,z-x)$, where $x,y,z$ are complex numbers satisfying the simultaneous equations \[ x(x-1)+2yz = y(y-1)+2zx = z(z-1)+2xy, \] and list all such triples $T$. -/ theorem putnam_1986_b2 : ({T : β„‚ Γ— β„‚ Γ— β„‚ | βˆƒ x y z : β„‚, T = (x - y, y - z, z - x) ∧ x * (x - 1) + 2 * y * z = y * (y - 1) + 2 * z * x ∧ y * (y - 1) + 2 * z * x = z * (z - 1) + 2 * x * y} = putnam_1986_b2_solution) := sorry
7ca24872ebc85edd
putnam_1996_b2
theorem putnam_1996_b2 (n : β„•) (prododd : ℝ) (npos : n > 0) (hprododd : prododd = ∏ i in Finset.range (2 * n), if Odd i then i else 1) : ((2 * n - 1 : ℝ) / Real.exp 1) ^ ((2 * n - 1 : ℝ) / 2) < prododd ∧ prododd < ((2 * n + 1 : ℝ) / Real.exp 1) ^ ((2 * n + 1 : ℝ) / 2) := sorry
f764c43ba48d4e7c
putnam_1991_b6
abbrev putnam_1991_b6_solution : ℝ β†’ ℝ β†’ ℝ := sorry -- (fun a b : ℝ => |Real.log (a / b)|) /-- Let $a$ and $b$ be positive numbers. Find the largest number $c$, in terms of $a$ and $b$, such that $a^xb^{1-x} \leq a\frac{\sinh ux}{\sinh u}+b\frac{\sinh u(1-x)}{\sinh u}$ for all $u$ with $0<|u| \leq c$ and for all $x$, $0<x<1$. (Note: $\sinh u=(e^u-e^{-u})/2$.) -/ theorem putnam_1991_b6 (a b : ℝ) (abpos : a > 0 ∧ b > 0) : IsGreatest {c | βˆ€ u, (0 < |u| ∧ |u| ≀ c) β†’ (βˆ€ x ∈ Set.Ioo 0 1, a ^ x * b ^ (1 - x) ≀ a * (Real.sinh (u * x) / Real.sinh u) + b * (Real.sinh (u * (1 - x)) / Real.sinh u))} (putnam_1991_b6_solution a b) := sorry
2ec1dcbb9ed8e25b
putnam_1973_b3
theorem putnam_1973_b3 (p : β„•) (pgt1 : p > 1) (hprime : βˆ€ x ∈ Set.Ico 0 p, Nat.Prime (x^2 - x + p)) : βˆƒ! triple : β„€ Γ— β„€ Γ— β„€, let (a,b,c) := triple; b^2 - 4*a*c = 1 - 4*p ∧ 0 < a ∧ a ≀ c ∧ -a ≀ b ∧ b < a := sorry
b9fffce99b844962
putnam_1963_b3
abbrev putnam_1963_b3_solution : Set (ℝ β†’ ℝ) := sorry -- {(fun u : ℝ => A * Real.sinh (k * u)) | (A : ℝ) (k : ℝ)} βˆͺ {(fun u : ℝ => A * u) | A : ℝ} βˆͺ {(fun u : ℝ => A * Real.sin (k * u)) | (A : ℝ) (k : ℝ)} /-- Find every twice-differentiable real-valued function $f$ with domain the set of all real numbers and satisfying the functional equation $(f(x))^2-(f(y))^2=f(x+y)f(x-y)$ for all real numbers $x$ and $y$. -/ theorem putnam_1963_b3 (f : ℝ β†’ ℝ) : f ∈ putnam_1963_b3_solution ↔ (ContDiff ℝ 1 f ∧ Differentiable ℝ (deriv f) ∧ βˆ€ x y : ℝ, (f x) ^ 2 - (f y) ^ 2 = f (x + y) * f (x - y)) := sorry
9c8d1c20b5b6a28b
putnam_2014_b6
theorem putnam_2014_b6 (f : ℝ β†’ ℝ) (hlip : βˆƒ K > 0, βˆ€ x ∈ Icc 0 1, βˆ€ y ∈ Icc 0 1, |f x - f y| ≀ K * |x - y|) (hrat : βˆ€ r ∈ Icc (0 : β„š) 1, βˆƒ a b : β„€, f r = a + b * r) : (βˆƒ I : Finset (Interval ℝ), (βˆ€ Ii ∈ I, βˆƒ m c : ℝ, βˆ€ x ∈ coeHom Ii, f x = c + m * x) ∧ Icc 0 1 = ⋃ Ii ∈ I, coeHom Ii) := sorry
de86d91d593a89a4
putnam_2004_b6
theorem putnam_2004_b6 (A B : Set β„•) (N : ℝ β†’ β„•) (b : β„• β†’ β„•) (Anempty : A.Nonempty) (Apos : βˆ€ a ∈ A, a > 0) (hN : βˆ€ x : ℝ, N x = Set.encard {a : A | a ≀ x}) (hB : B = {b' > 0 | βˆƒ a ∈ A, βˆƒ a' ∈ A, b' = a - a'}) (hbB : Set.range b = B ∧ βˆ€ i : β„•, b i < b (i + 1)) : (βˆ€ r : β„•, βˆƒ i : β„•, (b (i + 1) - b i) β‰₯ r) β†’ Tendsto (fun x => N x / x) atTop (𝓝 0) := sorry
0203e815dc76cd22
putnam_1970_b5
theorem putnam_1970_b5 (ramp : β„€ β†’ (ℝ β†’ ℝ)) (ramp_def : ramp = fun (n : β„€) => (fun (x : ℝ) => if x ≀ -n then (-n : ℝ) else (if -n < x ∧ x ≀ n then x else (n : ℝ)))) (F : ℝ β†’ ℝ) : Continuous F ↔ (βˆ€ n : β„•, Continuous ((ramp n) ∘ F)) := sorry
e31c61de0129ba50
putnam_2018_a3
abbrev putnam_2018_a3_solution : ℝ := sorry -- 480/49 /-- Determine the greatest possible value of $\sum_{i=1}^{10} \cos(3x_i)$ for real numbers $x_1, x_2, \ldots, x_{10}$ satisfying $\sum_{i=1}^{10} \cos(x_i) = 0$. -/ theorem putnam_2018_a3 : IsGreatest {βˆ‘ i, Real.cos (3 * x i) | (x : Fin 10 β†’ ℝ) (hx : βˆ‘ i, Real.cos (x i) = 0)} putnam_2018_a3_solution := sorry
c0c2eecfcb2c7327
putnam_2008_a3
theorem putnam_2008_a3 (n : β„•) (npos : n > 0) (a : Fin n β†’ β„•) (apos : βˆ€ i : Fin n, a i > 0) (cont : (Fin n β†’ β„•) β†’ Prop) (hcont : βˆ€ s, cont s ↔ βˆƒ j k : Fin n, j < k ∧ Β¬(s j ∣ s k)) (init trans : (β„• β†’ Fin n β†’ β„•) β†’ Prop) (hinit : βˆ€ P, init P ↔ P 0 = a) (htrans : βˆ€ P, trans P ↔ βˆ€ t : β„•, cont (P t) β†’ βˆƒ j k : Fin n, j < k ∧ Β¬(P t j ∣ P t k) ∧ P (t + 1) j = Nat.gcd (P t j) (P t k) ∧ P (t + 1) k = Nat.lcm (P t j) (P t k) ∧ βˆ€ i : Fin n, i β‰  j β†’ i β‰  k β†’ P (t + 1) i = P t i) : (βˆƒ f, βˆ€ P, init P β†’ trans P β†’ βˆƒ t : β„•, Β¬cont (P t) ∧ P t = f) := sorry
90a1b411182cb7ab
putnam_1995_b4
abbrev putnam_1995_b4_solution : β„€ Γ— β„€ Γ— β„€ Γ— β„€ := sorry -- ⟨3,1,5,2⟩ /-- Evaluate \[ \sqrt[8]{2207 - \frac{1}{2207-\frac{1}{2207-\dots}}}. \] Express your answer in the form $\frac{a+b\sqrt{c}}{d}$, where $a,b,c,d$ are integers. -/ theorem putnam_1995_b4 (contfrac : ℝ) (hcontfrac : contfrac = 2207 - 1 / contfrac) (hcontfrac' : 1 < contfrac) : let ⟨a, b, c, d⟩ := putnam_1995_b4_solution contfrac ^ ((1 : ℝ) / 8) = (a + b * sqrt c) / d := sorry
1cea4910949c423e