name
stringlengths 7
15
| statement
stringlengths 75
1.66k
| id
stringlengths 16
16
|
---|---|---|
putnam_1978_a2 | theorem putnam_1978_a2
(n : β)
(npos : n > 0)
(a b : β)
(hab : a β b)
(c : Fin n β β)
(A : Matrix (Fin n) (Fin n) β)
(hA : A = fun i j β¦ ite (i < j) a (ite (i > j) b (c i)))
(p : β β β)
(hp : p = fun x β¦ β i : Fin n, (c i - x))
: (A.det = ((b * p a - a * p b) / (b - a))) :=
sorry | 8492ed6519f323ad |
putnam_1968_a2 | theorem putnam_1968_a2
(a b c d e f : β€)
(Ξ΅ : β)
(hne : a * d β b * c)
(hΞ΅ : Ξ΅ > 0)
: β r s : β, (|r * a + s * b - e| : β) β Set.Ioo 0 Ξ΅ β§ (|r * c + s * d - f| : β) β Set.Ioo 0 Ξ΅ :=
sorry | b623c267ca7f90a9 |
putnam_1967_b1 | theorem putnam_1967_b1
(r : β)
(L : ZMod 6 β (EuclideanSpace β (Fin 2)))
(P Q R: EuclideanSpace β (Fin 2))
(hP : P = midpoint β (L 1) (L 2))
(hQ : Q = midpoint β (L 3) (L 4))
(hR : R = midpoint β (L 5) (L 0))
(hr : r > 0)
(hcyclic : β (O : EuclideanSpace β (Fin 2)), β i : ZMod 6, dist O (L i) = r)
(horder : β i j : ZMod 6, i β j β i + 1 = j β¨ i = j + 1 β¨ segment β (L i) (L j) β© interior (convexHull β {L k | k : ZMod 6}) β β
)
(hlens : dist (L 0) (L 1) = r β§ dist (L 2) (L 3) = r β§ dist (L 4) (L 5) = r)
(hdist : L 1 β L 2 β§ L 3 β L 4 β§ L 5 β L 0)
: dist P Q = dist R P β§ dist Q R = dist P Q :=
sorry | edfe352d3b0d5705 |
putnam_1977_b1 | abbrev putnam_1977_b1_solution : β := sorry
-- 2 / 3
/--
Find $\prod_{n=2}^{\infty} \frac{(n^3 - 1)}{(n^3 + 1)}$.
-/
theorem putnam_1977_b1
: Tendsto (fun N β¦ β n in Finset.Icc (2 : β€) N, ((n : β) ^ 3 - 1) / (n ^ 3 + 1)) atTop (π putnam_1977_b1_solution) :=
sorry | ac5bd2c32a378ae6 |
putnam_2000_b4 | theorem putnam_2000_b4
(f : β β β)
(hfcont : Continuous f)
(hf : β x, f (2 * x ^ 2 - 1) = 2 * x * f x)
: β x, x β Icc (-1) 1 β f x = 0 :=
sorry | 40adaa4335f925eb |
putnam_2010_b4 | abbrev putnam_2010_b4_solution : Set (Polynomial β Γ Polynomial β) := sorry
-- {(p, q) : Polynomial β Γ Polynomial β | p.degree β€ 1 β§ q.degree β€ 1 β§ p.coeff 0 * q.coeff 1 - p.coeff 1 * q.coeff 0 = 1}
/--
Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which $p(x)q(x+1)-p(x+1)q(x)=1$.
-/
theorem putnam_2010_b4
(p q : Polynomial β)
: (β x : β, p.eval x * q.eval (x + 1) - p.eval (x + 1) * q.eval x = 1) β (p, q) β putnam_2010_b4_solution :=
sorry | 27a77772aced7ed3 |
putnam_2009_a2 | abbrev putnam_2009_a2_solution : β β β := sorry
-- fun x β¦ 2 ^ (-(1 : β) / 12) * (Real.sin (6 * x + Real.pi / 4) / (Real.cos (6 * x + Real.pi / 4)) ^ 2) ^ ((1 : β) / 6)
/--
Functions $f,g,h$ are differentiable on some open interval around $0$
and satisfy the equations and initial conditions
\begin{gather*}
f' = 2f^2gh+\frac{1}{gh},\quad f(0)=1, \\
g'=fg^2h+\frac{4}{fh}, \quad g(0)=1, \\
h'=3fgh^2+\frac{1}{fg}, \quad h(0)=1.
\end{gather*}
Find an explicit formula for $f(x)$, valid in some open interval around $0$.
-/
theorem putnam_2009_a2
(f g h : β β β)
(a b : β)
(hab : 0 β Ioo a b)
(hdiff : DifferentiableOn β f (Ioo a b) β§ DifferentiableOn β g (Ioo a b) β§ DifferentiableOn β h (Ioo a b))
(hf : (β x β Ioo a b, deriv f x = 2 * (f x)^2 * (g x) * (h x) + 1 / ((g x) * (h x))) β§ f 0 = 1)
(hg : (β x β Ioo a b, deriv g x = (f x) * (g x)^2 * (h x) + 4 / ((f x) * (h x))) β§ g 0 = 1)
(hh : (β x β Ioo a b, deriv h x = 3 * (f x) * (g x) * (h x)^2 + 1 / ((f x) * (g x))) β§ h 0 = 1)
: (β c d : β, 0 β Ioo c d β§ β x β Ioo c d, f x = putnam_2009_a2_solution x) :=
sorry | e363a9885c4798e7 |
putnam_1993_b1 | abbrev putnam_1993_b1_solution : β := sorry
-- 3987
/--
Find the smallest positive integer $n$ such that for every integer $m$ with $0<m<1993$, there exists an integer $k$ for which $\frac{m}{1993}<\frac{k}{n}<\frac{m+1}{1994}$.
-/
theorem putnam_1993_b1 :
IsLeast
{n : β | 0 < n β§
β m β Set.Ioo (0 : β€) (1993), β k : β€,
(m / 1993 < (k : β) / n) β§ ((k : β) / n < (m + 1) / 1994) }
putnam_1993_b1_solution :=
sorry | e12904e683aba040 |
putnam_2016_b1 | abbrev putnam_2016_b1_solution : β := sorry
-- exp 1 - 1
/--
Let $x_0,x_1,x_2,\dots$ be the sequence such that $x_0=1$ and for $n \geq 0$,
\[
x_{n+1} = \ln(e^{x_n} - x_n)
\]
(as usual, the function $\ln$ is the natural logarithm). Show that the infinite series
\[
x_0 + x_1 + x_2 + \cdots
\]
converges and find its sum.
-/
theorem putnam_2016_b1
(x : β β β)
(hx0 : x 0 = 1)
(hxn : β n : β, x (n + 1) = log (exp (x n) - (x n)))
: (β' n : β, x n = putnam_2016_b1_solution) :=
sorry | 207408c640f4c146 |
putnam_2006_b1 | abbrev putnam_2006_b1_solution : β := sorry
-- 3 * Real.sqrt 3 / 2
/--
Show that the curve $x^3 + 3xy + y^3 = 1$ contains only one set of three distinct points, $A$, $B$, and $C$, which are vertices of an equilateral triangle, and find its area.
-/
theorem putnam_2006_b1
(curve : Set (β Γ β))
(hcurve : curve = {(x, y) | x ^ 3 + 3 * x * y + y ^ 3 = 1})
(equilateral : Set (β Γ β) β Prop)
(hequilateral : β S, equilateral S β S.encard = 3 β§
β d : β, β P β S, β Q β S, P β Q β
Real.sqrt ((P.1 - Q.1)^2 + (P.2 - Q.2)^2) = d) :
(β! S : Set (β Γ β), S β curve β§ equilateral S) β§
(β S : Set (β Γ β), S β curve β§ equilateral S β§ (MeasureTheory.volume (convexHull β S)).toReal = putnam_2006_b1_solution) :=
sorry | afc331d85551eb86 |
putnam_2024_a5 | abbrev putnam_2024_a5_solution : Set β := sorry
--{0}
/--
Consider a circle $\Omega$ with radius $9$ and center at the origin $(0, 0)$ and a disk $\Delta$ with radius $1$ and center at $(r, 0)$ where $0 \le r \le 8$. Two points $P$ and $Q$ are chosen independently and uniformly at random
on $\Omega$. Which value(s) of $r$ minimize the probability that the chord $\overline{PQ}$ intersects $\Delta$?
-/
theorem putnam_2024_a5
(IsIntersecting : β β EuclideanSpace β (Fin 2) β EuclideanSpace β (Fin 2) β Prop)
(IsIntersecting_def : β r P Q,
IsIntersecting r P Q β (line[β,P,Q] : Set (EuclideanSpace β (Fin 2)))
β© Metric.sphere ((WithLp.equiv _ _).symm ![r, 0]) 1 β β
)
(ProbIntersect : β β ββ₯0β)
(ProbIntersect_def : β r,
ProbIntersect r = volume {(s, t) : β Γ β | s β Set.Icc 0 1 β§ t β Set.Icc 0 1 β§
IsIntersecting r
((WithLp.equiv _ _).symm ![9 * Real.cos (2 * Real.pi * s), 9 * Real.sin (2 * Real.pi * s)])
((WithLp.equiv _ _).symm ![9 * Real.cos (2 * Real.pi * t), 9 * Real.sin (2 * Real.pi * t)]) }) :
{r | r β Set.Icc 0 8 β§ ProbIntersect r = β¨
x β Set.Icc 0 8, ProbIntersect x} =
putnam_2024_a5_solution :=
sorry | 547b74856f9f89df |
putnam_2011_b5 | theorem putnam_2011_b5
(a : β β β)
(h : β A : β, β n : β, β« x : β, ((β i : Finset.range n, 1 / (1 + (x - a i) ^ 2)) ^ 2) β€ A * n) :
β B : β, B > 0 β§
β n : β, β' i : Finset.range n, β' j : Finset.range n, (1 + (a i - a j) ^ 2) β₯ B * n ^ 3 :=
sorry | 50cf353b24059ae2 |
putnam_2001_b5 | theorem putnam_2001_b5
(a b : β)
(g : β β β)
(abint : 0 < a β§ a < 1 / 2 β§ 0 < b β§ b < 1 / 2)
(gcont : Continuous g)
(hg : β x : β, g (g x) = a * g x + b * x)
: β c : β, β x : β, g x = c * x :=
sorry | 40e4c9c4305aa4f5 |
putnam_2023_a1 | abbrev putnam_2023_a1_solution : β := sorry
-- 18
/--
For a positive integer $n$, let $f_n(x) = \cos(x) \cos(2x) \cos(3x) \cdots \cos(nx)$. Find the smallest $n$ such that $|f_n''(0)| > 2023$.
-/
theorem putnam_2023_a1
(f : β β β β β)
(hf : β n > 0, f n = fun x : β => β i in Finset.Icc 1 n, Real.cos (i * x)) :
IsLeast {n | 0 < n β§ |iteratedDeriv 2 (f n) 0| > 2023} putnam_2023_a1_solution :=
sorry | c06236665728fe64 |
putnam_1984_b5 | abbrev putnam_1984_b5_solution : β€ Γ Polynomial β Γ Polynomial β := sorry
-- (2, (Polynomial.X * (Polynomial.X - 1)) / 2, Polynomial.X)
/--
For each nonnegative integer $k$, let $d(k)$ denote the number of $1$'s in the binary expansion of $k$ (for example, $d(0)=0$ and $d(5)=2$). Let $m$ be a positive integer. Express $\sum_{k=0}^{2^m-1} (-1)^{d(k)}k^m$ in the form $(-1)^ma^{f(m)}(g(m))!$, where $a$ is an integer and $f$ and $g$ are polynomials.
-/
theorem putnam_1984_b5
(m : β) (mpos : m > 0)
(d : β β β)
(sumbits : List β β β)
(hsumbits : β bits : List β, sumbits bits = β i : Fin bits.length, bits[i])
(hd : β k : β, d k = sumbits (Nat.digits 2 k)) :
let (a, f, g) := putnam_1984_b5_solution;
β k : Set.Icc 0 (2 ^ m - 1), (-(1 : β€)) ^ (d k) * (k : β) ^ m = (-1) ^ m * (a : β) ^ (f.eval (m : β)) * (g.eval m)! :=
sorry | 1d8cdb566fa1ce11 |
putnam_1979_a3 | abbrev putnam_1979_a3_solution : (β Γ β) β Prop := sorry
-- fun (a, b) => β m : β€, a = m β§ b = m
/--
Let $x_1, x_2, x_3, \dots$ be a sequence of nonzero real numbers such that $$x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2}-x_{n-1}}$$ for all $n \ge 3$. For which real values of $x_1$ and $x_2$ does $x_n$ attain integer values for infinitely many $n$?
-/
theorem putnam_1979_a3
(x : β β β)
(hx : β n : β, x n β 0 β§ (n β₯ 3 β x n = (x (n - 2))*(x (n - 1))/(2*(x (n - 2)) - (x (n - 1)))))
: (β m : β, β n : β, n > m β§ β a : β€, a = x n) β putnam_1979_a3_solution (x 1, x 2) :=
sorry | d9a4e65f254112c5 |
putnam_1994_b5 | theorem putnam_1994_b5
(n : β) (hn : n > 0)
(f : β β β€ β β€)
(hf : β (Ξ± : β) (x : β€), f Ξ± x = Int.floor (Ξ± * x)) :
β Ξ± : β,
β k β Set.Icc 1 n,
((f Ξ±)^[k] (n ^ 2) = n ^ 2 - k) β§
(f (Ξ± ^ k) (n ^ 2) = n ^ 2 - k) :=
sorry | 2d2318502096ceae |
putnam_1997_b3 | abbrev putnam_1997_b3_solution : Set β := sorry
-- {n | (1 β€ n β§ n β€ 4) β¨ (20 β€ n β§ n β€ 24) β¨ (100 β€ n β§ n β€ 104) β¨ (120 β€ n β§ n β€ 124)}
/--
For each positive integer $n$, write the sum $\sum_{m=1}^n 1/m$ in the form $p_n/q_n$, where $p_n$ and $q_n$ are relatively prime positive integers. Determine all $n$ such that 5 does not divide $q_n$.
-/
theorem putnam_1997_b3
(n : β)
(hn : n > 0)
: n β putnam_1997_b3_solution β Β¬5 β£ (β m in Finset.Icc 1 n, 1/m : β).den :=
sorry | fccf7e72214506d9 |
putnam_1987_b3 | theorem putnam_1987_b3
(F : Type*) [Field F]
(hF : (1 : F) + 1 β 0)
: {(x, y) : F Γ F | x ^ 2 + y ^ 2 = 1} = {(1, 0)} βͺ {((r ^ 2 - 1) / (r ^ 2 + 1), (2 * r) / (r ^ 2 + 1)) | r β {r' : F | r' ^ 2 β -1}} :=
sorry | 47afcb5774daa25e |
putnam_2002_b3 | theorem putnam_2002_b3
(e : β)
(he : e = Real.exp 1)
(f : β€ β β)
(hf : f = fun n : β€ => 1/e - (1 - 1/n)^n)
: β n : β€, n > 1 β 1/(2*n*e) < f n β§ f n < 1/(n*e) :=
sorry | 2b1a8bbb0cfa3377 |
putnam_2012_b3 | abbrev putnam_2012_b3_solution : Prop := sorry
-- True
/--
A round-robin tournament of $2n$ teams lasted for $2n-1$ days, as follows. On each day, every team played one game against another team, with one team winning and one team losing in each of the $n$ games. Over the course of the tournament, each team played every other team exactly once. Can one necessarily choose one winning team from each day without choosing any team more than once?
-/
theorem putnam_2012_b3
(nmatchupsgames nmatchupsall : (n : β) β (Fin (2 * n - 1) β (Fin (2 * n) β Fin (2 * n))) β Prop)
(nmatchupswins nmatchupswinschoices: (n : β) β (Fin (2 * n - 1) β (Fin (2 * n) β Fin (2 * n))) β (Fin (2 * n - 1) β (Fin (2 * n) β Bool)) β Prop)
(hnmatchupsall : β n matchups, nmatchupsall n matchups β β t1 t2, t1 β t2 β (β d, matchups d t1 = t2))
(hnmatchupsgames : β n matchups, nmatchupsgames n matchups β β d, β t, matchups d t β t β§ matchups d (matchups d t) = t)
(hnmatchupswins : β n matchups wins, nmatchupswins n matchups wins β β d t, wins d t = !(wins d (matchups d t)))
(hnmatchupswinschoices : β n matchups wins, nmatchupswinschoices n matchups wins β β choices, (β d, wins d (choices d)) β§ Function.Injective choices) :
(β n β₯ 1, β matchups wins,
(nmatchupsgames n matchups β§ nmatchupsall n matchups β§ nmatchupswins n matchups wins) β
nmatchupswinschoices n matchups wins)
β putnam_2012_b3_solution :=
sorry | 8ed82a1aaa7f8392 |
putnam_1965_b6 | theorem putnam_1965_b6
(A B C D : EuclideanSpace β (Fin 2))
(S : Set (EuclideanSpace β (Fin 2)))
(hS : S = {A, B, C, D})
(hdistinct : S.ncard = 4)
(through : (β Γ (EuclideanSpace β (Fin 2))) β (EuclideanSpace β (Fin 2)) β Prop)
(through_def : through = fun (r, P) => fun Q => dist P Q = r)
(hABCD : β r s : β, β P Q,
through (r, P) A β§ through (r, P) B β§ through (s, Q) C β§ through (s, Q) D β
β I, through (r, P) I β§ through (s, Q) I) :
Collinear β S β¨ β r : β, β P, β Q β S, through (r, P) Q :=
sorry | 0803075585b2b8eb |
putnam_1975_b6 | theorem putnam_1975_b6
(s : β β β)
(hs : s = fun (n : β) => β i in Finset.Icc 1 n, 1/(i : β))
: (β n : β, n > 1 β n * (n+1 : β)^(1/(n : β)) < n + s n) β§ (β n : β, n > 2 β ((n : β) - 1)*((n : β)^(-1/(n-1 : β))) < n - s n) :=
sorry | b0f686e5ad2afc18 |
putnam_1962_b2 | theorem putnam_1962_b2
: β f : β β Set β+, β a b : β, a < b β f a β f b :=
sorry | 41b85946ad0e33c4 |
putnam_1972_b2 | abbrev putnam_1972_b2_solution : β β β β β := sorry
-- fun s v : β β¦ 2 * s / v
/--
Let $x : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function whose second derivative is nonstrictly decreasing. If $x(t) - x(0) = s$, $x'(0) = 0$, and $x'(t) = v$ for some $t > 0$, find the maximum possible value of $t$ in terms of $s$ and $v$.
-/
theorem putnam_1972_b2
(s v : β)
(hs : s > 0)
(hv : v > 0)
(valid : β β (β β β) β Prop)
(hvalid : β t x, valid t x β
DifferentiableOn β x (Set.Icc 0 t) β§ DifferentiableOn β (deriv x) (Set.Icc 0 t) β§
AntitoneOn (deriv (deriv x)) (Set.Icc 0 t) β§
deriv x 0 = 0 β§ deriv x t = v β§ x t - x 0 = s)
: IsGreatest {t | β x : β β β, valid t x} (putnam_1972_b2_solution s v) :=
sorry | 3db41a0a38d4e999 |
putnam_2003_b1 | abbrev putnam_2003_b1_solution : Prop := sorry
-- False
/--
Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that \[ 1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)\] holds identically?
-/
theorem putnam_2003_b1
: (β a b c d : Polynomial β, (β x y : β, 1 + x * y + x ^ 2 * y ^ 2 = a.eval x * c.eval y + b.eval x * d.eval y)) β putnam_2003_b1_solution :=
sorry | 61426af1ae4611f9 |
putnam_2013_b1 | abbrev putnam_2013_b1_solution : β€ := sorry
-- -1
/--
For positive integers $n$, let the numbers $c(n)$ be determined by the rules $c(1)=1$, $c(2n)=c(n)$, and $c(2n+1)=(-1)^nc(n)$. Find the value of $\sum_{n=1}^{2013} c(n)c(n+2)$.
-/
theorem putnam_2013_b1
(c : β β β€)
(hc1 : c 1 = 1)
(hceven : β n : β, n > 0 β c (2 * n) = c n)
(hcodd : β n : β, n > 0 β c (2 * n + 1) = (-1) ^ n * c n)
: (β n : Set.Icc 1 2013, c n * c (n.1 + 2)) = putnam_2013_b1_solution :=
sorry | 7346385ccad1ee54 |
putnam_1964_b4 | abbrev putnam_1964_b4_solution : β β β := sorry
--fun n => n^2 - n + 2
/--
$n$ great circles on the sphere are in general position (in other words at most two circles pass through any two points on the sphere). How many regions do they divide the sphere into?
-/
theorem putnam_1964_b4
{n : β} (hn : 0 < n)
-- `C` is a collection of `n` great circles on the sphere, i.e a collection of sets
(C : Fin n β Set (EuclideanSpace β (Fin 3)))
--together with a collection of `n` normal vectors `v`
(v : Fin n β EuclideanSpace β (Fin 3))
-- A great circle `C` is the intersection of a plane `{x | x Β· v = 0}` with `S`
(hv : β i, C i = Metric.sphere 0 1 β© {x : EuclideanSpace β (Fin 3) | βͺv i, xβ«_β = 0 })
--all the `v_i`'s are non-zero
(hv' : β i, v i β 0)
-- The circles in `C` are in general position
(hTβ : βα΅ (x β Metric.sphere 0 1) (y β Metric.sphere 0 1),
(Finset.univ.filter (fun i => {x, y} β (C i))).card β€ 2)
-- The predicate that a set `R β βΒ³` is a region bounded by the collection of circles
(IsRegion : Set (EuclideanSpace β (Fin 3)) β Prop)
-- We can determine the points `x` in such a region by looking at the sign of their dot product
-- with `n i` for `i : Fin n`
(IsRegion_def : β R, IsRegion R β R.Nonempty β§ β sign : Fin n β SignType, (β i, sign i β 0) β§
R = Metric.sphere 0 1 β© {x : EuclideanSpace β (Fin 3) | β i, signHom βͺv i, xβ«_β = sign i}) :
{R | IsRegion R}.ncard = putnam_1964_b4_solution n :=
sorry | 016709f609e3a155 |
putnam_1989_a2 | abbrev putnam_1989_a2_solution : β β β β β := sorry
-- (fun a b : β => (Real.exp (a ^ 2 * b ^ 2) - 1) / (a * b))
/--
Evaluate $\int_0^a \int_0^b e^{\max\{b^2x^2,a^2y^2\}}\,dy\,dx$ where $a$ and $b$ are positive.
-/
theorem putnam_1989_a2
(a b : β)
(abpos : a > 0 β§ b > 0)
: β« x in Set.Ioo 0 a, β« y in Set.Ioo 0 b, Real.exp (max (b ^ 2 * x ^ 2) (a ^ 2 * y ^ 2)) = putnam_1989_a2_solution a b :=
sorry | c289ef295942465f |
putnam_2021_a5 | abbrev putnam_2021_a5_solution : Set β := sorry
-- {j : β | Β¬(42 β£ j) β§ Β¬(46 β£ j)}
/--
Let $A$ be the set of all integers $n$ such that $1 \leq n \leq 2021$ and $\gcd(n,2021)=1$. For every nonnegative integer $j$, let $S(j)=\sum_{n \in A}n^j$. Determine all values of $j$ such that $S(j)$ is a multiple of $2021$.
-/
theorem putnam_2021_a5
(j : β)
(A : Finset β)
(S : β β β)
(hA : A = {n | 1 β€ n β§ n β€ 2021 β§ Nat.gcd n 2021 = 1})
(hS : β j' : β, S j' = β n in A, n ^ j') :
(2021 β£ S j) β j β putnam_2021_a5_solution :=
sorry | 47fc78009adf96bb |
putnam_1974_b4 | theorem putnam_1974_b4
(f : β Γ β β β)
(hfcontx : β y : β, Continuous (fun x => f β¨x, yβ©))
(hfconty : β x : β, Continuous (fun y => f β¨x, yβ©))
: β g : β β (β Γ β β β), (β n : β, Continuous (g n)) β§ (β x y : β, Tendsto (fun n => g n β¨x, yβ©) atTop (π (f β¨x, yβ©))) :=
sorry | d001c2ea59653d4b |
putnam_1999_a2 | theorem putnam_1999_a2
(p : Polynomial β)
(hp : β x, p.eval x β₯ 0)
: βα΅ (k) (f : Fin k β Polynomial β),
k > 0 β§
β x : β, p.eval x = β j : Fin k, ((f j).eval x) ^ 2 :=
sorry | 3a5bd5a7b9da14fd |
putnam_1996_b1 | abbrev putnam_1996_b1_solution : β β β := sorry
-- Nat.fib
/--
Define a \emph{selfish} set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2,\ldots,n\}$ which are \emph{minimal} selfish sets, that is, selfish sets none of whose proper subsets is selfish.
-/
theorem putnam_1996_b1
(selfish : Finset β β Prop)
(n : β)
(hselfish : β s : Finset β, selfish s = (s.card β s))
(npos : n β₯ 1)
: {s : Finset β | (s : Set β) β Set.Icc 1 n β§ selfish s β§ (β ss : Finset β, ss β s β Β¬selfish ss)}.encard = putnam_1996_b1_solution n :=
sorry | 21910be780bbdfc8 |
putnam_1986_b1 | abbrev putnam_1986_b1_solution : β := sorry
-- 2 / 5
/--
Inscribe a rectangle of base $b$ and height $h$ and an isosceles triangle of base $b$ (against a corresponding side of the rectangle and pointed in the other direction) in a circle of radius one. For what value of $h$ do the rectangle and triangle have the same area?
-/
theorem putnam_1986_b1
(b h : β)
(hbh : b > 0 β§ h > 0 β§ b ^ 2 + h ^ 2 = 2 ^ 2)
(areaeq : b * h = 0.5 * b * (1 - h / 2))
: h = putnam_1986_b1_solution :=
sorry | 4f09cc992e9047e7 |
putnam_1991_b5 | abbrev putnam_1991_b5_solution : β β β := sorry
-- (fun p : β => Nat.ceil ((p : β) / 4))
/--
Let $p$ be an odd prime and let $\mathbb{Z}_p$ denote (the field of) integers modulo $p$. How many elements are in the set $\{x^2:x \in \mathbb{Z}_p\} \cap \{y^2+1:y \in \mathbb{Z}_p\}$?
-/
theorem putnam_1991_b5
(p : β)
(podd : Odd p)
(pprime : Prime p)
: ({z : ZMod p | β x : ZMod p, z = x ^ 2} β© {z : ZMod p | β y : ZMod p, z = y ^ 2 + 1}).encard = putnam_1991_b5_solution p :=
sorry | 69569975fef69736 |
putnam_1981_b5 | abbrev putnam_1981_b5_solution : Prop := sorry
-- True
/--
Let $B(n)$ be the number of ones in the base two expression for the positive integer $n$. For example, $B(6)=B(110_2)=2$ and $B(15)=B(1111_2)=4$. Determine whether or not $\exp \left(\sum_{n=1}^\infty \frac{B(n)}{n(n+1)}\right)$ is a rational number. Here $\exp(x)$ denotes $e^x$.
-/
theorem putnam_1981_b5
(sumbits : List β β β€)
(B : β β β€)
(hsumbits : β bits : List β, sumbits bits = β i : Fin bits.length, (bits[i] : β€))
(hB : β n > 0, B n = sumbits (Nat.digits 2 n))
: (β q : β, Real.exp (β' n : Set.Ici 1, B n / ((n : β) * ((n : β) + 1))) = q) β putnam_1981_b5_solution :=
sorry | 3e84bea279c0f35b |
putnam_2004_b5 | abbrev putnam_2004_b5_solution : β := sorry
-- 2 / Real.exp 1
/--
Evaluate $\lim_{x \to 1^-} \prod_{n=0}^\infty \left(\frac{1+x^{n+1}}{1+x^n}\right)^{x^n}$.
-/
theorem putnam_2004_b5
(xprod : β β β)
(hxprod : β x β Set.Ioo 0 1,
Tendsto (fun N β¦ β n in Finset.range N, ((1 + x ^ (n + 1)) / (1 + x ^ n)) ^ (x ^ n))
atTop (π (xprod x))) :
Tendsto xprod (π[<] 1) (π putnam_2004_b5_solution) :=
sorry | 8d8ef9918e893a68 |
putnam_2017_b3 | theorem putnam_2017_b3
(f : β β β)
(c : β β β)
(hc : β n, c n = 0 β¨ c n = 1)
(hf : β x, f x = β' n : β, (c n) * x^n)
: f (2/3) = 3/2 β Irrational (f 1/2) :=
sorry | 22fd80882df6a7c0 |
putnam_2007_b3 | abbrev putnam_2007_b3_solution : β := sorry
-- (2 ^ 2006 / Real.sqrt 5) * (((1 + Real.sqrt 5) / 2) ^ 3997 - ((1 + Real.sqrt 5) / 2) ^ (-3997 : β€))
/--
Let $x_0 = 1$ and for $n \geq 0$, let $x_{n+1} = 3x_n + \lfloor x_n \sqrt{5} \rfloor$. In particular, $x_1 = 5$, $x_2 = 26$, $x_3 = 136$, $x_4 = 712$. Find a closed-form expression for $x_{2007}$. ($\lfloor a \rfloor$ means the largest integer $\leq a$.)
-/
theorem putnam_2007_b3
(x : β β β)
(hx0 : x 0 = 1)
(hx : β n : β, x (n + 1) = 3 * (x n) + β(x n) * Real.sqrt 5β)
: (x 2007 = putnam_2007_b3_solution) :=
sorry | aeebf813c489528e |
putnam_1970_b6 | theorem putnam_1970_b6
(L : ZMod 4 β (EuclideanSpace β (Fin 2)))
(S : Set (EuclideanSpace β (Fin 2)))
(S_def : S = {L i | i : ZMod 4})
(hSquad : S.ncard = 4 β§ β s β S, s.ncard = 3 β Β¬ Collinear β s)
(hlens : dist (L 0) (L 1) > 0 β§ dist (L 1) (L 2) > 0 β§ dist (L 2) (L 3) > 0 β§ dist (L 3) (L 0) > 0)
(horder : β i : ZMod 4, segment β (L i) (L (i + 1)) β© interior (convexHull β S) = β
)
(hcircum : β (O: EuclideanSpace β (Fin 2)) (r : β), O β convexHull β S β§ r > 0 β§ β i : ZMod 4,
β! I : EuclideanSpace β (Fin 2), Collinear β {I, L i, L (i + 1)} β§ dist O I = r)
(harea : (MeasureTheory.volume (convexHull β S)).toReal =
Real.sqrt (dist (L 0) (L 1) * dist (L 1) (L 2) * dist (L 2) (L 3) * dist (L 3) (L 0)))
: Cospherical S :=
sorry | 399d386cc130b70e |
putnam_1982_b3 | abbrev putnam_1982_b3_solution : β := sorry
-- 4/3 * (Real.sqrt 2 - 1)
/--
Let $p_n$ denote the probability that $c + d$ will be a perfect square if $c$ and $d$ are selected independently and uniformly at random from $\{1, 2, 3, \dots, n\}$. Express $\lim_{n \rightarrow \infty} p_n \sqrt{n}$ in the form $r(\sqrt{s} - t)$ for integers $s$ and $t$ and rational $r$.
-/
theorem putnam_1982_b3
(p : β β β)
(hp : p = fun n : β => ({(c, d) : Finset.Icc 1 n Γ Finset.Icc 1 n | β m : β, m^2 = c + d}.ncard : β) / n^2)
: Tendsto (fun n : β => p n * Real.sqrt n) atTop (π putnam_1982_b3_solution) :=
sorry | 47a1faadb7687193 |
putnam_1992_b3 | abbrev putnam_1992_b3_solution : β := sorry
-- 4 + Real.pi
/--
For any pair $(x,y)$ of real numbers, a sequence $(a_n(x,y))_{n \geq 0}$ is defined as follows:
\begin{align*}
a_0(x,y)&=x, \\
a_{n+1}(x,y)&=\frac{(a_n(x,y))^2+y^2}{2},\text{ for $n \geq 0$.}
\end{align*}
Find the area of the region $\{(x,y) \mid (a_n(x,y))_{n \geq 0}\text{ converges}\}$.
-/
theorem putnam_1992_b3
(a : (Fin 2 β β) β (β β β))
(ha : β p, (a p) 0 = p 0 β§ (β n, (a p) (n + 1) = (((a p) n) ^ 2 + (p 1) ^ 2) / 2)) :
putnam_1992_b3_solution = (MeasureTheory.volume {p | β L, Tendsto (a p) atTop (π L)}).toReal :=
sorry | b5605ec3d164b8ed |
putnam_1968_a1 | theorem putnam_1968_a1
: 22/7 - Real.pi = β« x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) :=
sorry | 2a8f01466ce3f45f |
putnam_1978_a1 | theorem putnam_1978_a1
(S T : Set β€)
(hS : S = {k | β j : β€, 0 β€ j β§ j β€ 33 β§ k = 3 * j + 1})
(hT : T β S β§ T.ncard = 20)
: (β m β T, β n β T, m β n β§ m + n = 104) :=
sorry | 9ee4620c3ea37de8 |
putnam_2022_a3 | theorem putnam_2022_a3
(p f : β)
(hp : Nat.Prime p β§ p > 5)
(hf : f = {a : β β (ZMod p) | β n : β, a n β 0 β§ a n * a (n + 2) = 1 + a (n + 1)}.ncard)
: f β‘ 0 [MOD 5] β¨ f β‘ 2 [MOD 5] :=
sorry | 77be6055b731860b |
putnam_1967_b2 | theorem putnam_1967_b2
(p r A B C Ξ± Ξ² Ξ³ : β)
(prbound : 0 β€ p β§ p β€ 1 β§ 0 β€ r β§ r β€ 1)
(id1 : β x y : β, (p * x + (1 - p) * y) ^ 2 = A * x ^ 2 + B * x * y + C * y ^ 2)
(id2 : β x y : β, (p * x + (1 - p) * y) * (r * x + (1 - r) * y) = Ξ± * x ^ 2 + Ξ² * x * y + Ξ³ * y ^ 2)
: max (max A B) C β₯ 4 / 9 β§ max (max Ξ± Ξ²) Ξ³ β₯ 4 / 9 :=
sorry | 5e0f99eb036c18eb |
putnam_1983_b2 | abbrev putnam_1983_b2_solution : Prop := sorry
-- True
/--
Let $f(n)$ be the number of ways of representing $n$ as a sum of powers of $2$ with no power being used more than $3$ times. For example, $f(7) = 4$ (the representations are $4 + 2 + 1$, $4 + 1 + 1 + 1$, $2 + 2 + 2 + 1$, $2 + 2 + 1 + 1 + 1$). Can we find a real polynomial $p(x)$ such that $f(n) = [p(n)]$, where $[u]$ denotes the greatest integer less than or equal to $u$?
-/
theorem putnam_1983_b2
(f : β+ β β)
(hf : f = fun (n : β+) β¦
Set.ncard {M : Multiset β |
(β m β M, β k : β, m = (2 ^ k : β€)) β§
(β m β M, M.count m β€ 3) β§
(M.sum : β€) = n}) :
putnam_1983_b2_solution β
(β p : Polynomial β, β n : β+, βp.eval (n : β)β = f n) :=
sorry | 4d2af46d7d58f258 |
putnam_2019_a1 | abbrev putnam_2019_a1_solution : Set β€ := sorry
-- {n : β€ | n β₯ 0 β§ Β¬Int.ModEq 9 n 3 β§ Β¬Int.ModEq 9 n 6}
/--
Determine all possible values of the expression
\[
A^3+B^3+C^3-3ABC
\]
where $A, B$, and $C$ are nonnegative integers.
-/
theorem putnam_2019_a1
: {n : β€ | β A B C : β€, A β₯ 0 β§ B β₯ 0 β§ C β₯ 0 β§ A^3 + B^3 + C^3 - 3*A*B*C = n} = putnam_2019_a1_solution :=
sorry | 71ba31ca577b2f05 |
putnam_2009_a1 | abbrev putnam_2009_a1_solution : Prop := sorry
-- True
/--
Let $f$ be a real-valued function on the plane such that for every square $ABCD$ in the plane, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points $P$ in the plane?
-/
theorem putnam_2009_a1
: ((β f : (β Γ β) β β, (β O v : β Γ β, v β (0, 0) β f (O.1, O.2) + f (O.1 + v.1, O.2 + v.2) + f (O.1 + v.1 - v.2, O.2 + v.2 + v.1) + f (O.1 - v.2, O.2 + v.1) = 0) β β P : β Γ β, f P = 0) β putnam_2009_a1_solution) :=
sorry | bbde3d3654a80dbf |
putnam_2024_a6 | abbrev putnam_2024_a6_solution : β β β := sorry
--fun n => 10^(n*(n-1)/2 : β)
/--
Let $c_0, c_1, c_2, ...$ be a sequence defined so that
$$\frac{1 - 3x - \sqrt{1 - 14x + 9x^2}}{4} = \sum_{k=0}^\infty c_k x^k$$
for sufficiently small $x$.
For a positive integer $n$, let $A$ be the $n$-by-$n$ matrix whose
$(i, j)$-entry is $c_{i+j-1}$ for $i$ and $j$ in $\{1, 2, ..., n\}$.
Find the determinant of $A$.
-/
theorem putnam_2024_a6
(c : β β β)
(n : β)
(hβ : βαΆ x in π 0,
HasSum (fun k => c k * x ^ k) ((1 - 3 * x - β(1 - 14 * x + 9 * x ^ 2)) / 4))
(hβ : 0 < n) :
(Matrix.of fun (i j : Fin n) => c (i + j + 1)).det = putnam_2024_a6_solution n :=
sorry | f5a5652d4ee05bfd |
putnam_2006_b2 | theorem putnam_2006_b2
(n : β)
(npos : n > 0)
(X : Finset β)
(hXcard : X.card = n)
: (β S β X, S β β
β§ β m : β€, |m + β s in S, s| β€ 1 / (n + 1)) :=
sorry | 5b3189bd952b5132 |
putnam_2016_b2 | abbrev putnam_2016_b2_solution : β Γ β := sorry
-- (3 / 4, 4 / 3)
/--
Define a positive integer $n$ to be \emph{squarish} if either $n$ is itself a perfect square or the distance from $n$ to the nearest perfect square is a perfect square. For example, $2016$ is squarish, because the nearest perfect square to $2016$ is $45^2 = 2025$ and $2025 - 2016 = 9$ is a perfect square. (Of the positive integers between $1$ and $10$, only $6$ and $7$ are not squarish.)
For a positive integer $N$, let $S(N)$ be the number of squarish integers between $1$ and $N$,
inclusive. Find positive constants $\alpha$ and $\beta$ such that
\[
\lim_{N \to \infty} \frac{S(N)}{N^\alpha} = \beta,
\]
or show that no such constants exist.
-/
theorem putnam_2016_b2
(squarish : β€ β Prop)
(hsquarish : β n, squarish n β IsSquare n β¨ β w : β€, IsSquare |n - w ^ 2| β§ β v : β, |n - w ^ 2| β€ |n - v ^ 2|)
(S : β€ β β)
(hS : S = fun n β¦ {i β Finset.Icc 1 n | squarish i}.card)
(p : β β β β Prop)
(hp : β Ξ± Ξ², p Ξ± Ξ² β Ξ± > 0 β§ Ξ² > 0 β§ Tendsto (fun N β¦ S N / (N : β) ^ Ξ±) atTop (π Ξ²))
: ((β Ξ± Ξ² : β, ((Ξ±, Ξ²) = putnam_2016_b2_solution β p Ξ± Ξ²)) β¨ Β¬β Ξ± Ξ² : β, p Ξ± Ξ²) :=
sorry | a370a8b21fc01495 |
putnam_1966_b3 | theorem putnam_1966_b3
(p : β β β)
(hpos : β n : β, p n > 0)
(hconv : β r : β, Tendsto (fun m : β => β n in Finset.Icc 1 m, 1/(p n)) atTop (π r))
: β r : β, Tendsto (fun m : β => β n in Finset.Icc 1 m, (p n) * n^2/(β i in Finset.Icc 1 n, p i)^2) atTop (π r) :=
sorry | 6248be676f76a6ad |
putnam_2023_a2 | abbrev putnam_2023_a2_solution : β β Set β := sorry
-- fun n => {(1 : β)/(factorial n), -(1 : β)/(factorial n)}
/--
Let $n$ be an even positive integer. Let $p$ be a monic, real polynomial of degree $2n$; that is to say, $p(x) = x^{2n} + a_{2n-1} x^{2n-1} + \cdots + a_1 x + a_0$ for some real coefficients $a_0, \dots, a_{2n-1}$. Suppose that $p(1/k) = k^2$ for all integers $k$ such that $1 \leq |k| \leq n$. Find all other real numbers $x$ for which $p(1/x) = x^2$.
-/
theorem putnam_2023_a2
(n : β)
(hn : n > 0 β§ Even n)
(p : Polynomial β)
(hp : Polynomial.Monic p β§ p.degree = 2*n)
(S : Set β)
(hS : S = {x : β | β k : β€, x = k β§ 1 β€ |k| β§ |k| β€ n})
(hpinv : β k β S, p.eval (1/k) = k^2)
: {x : β | x β 0 β§ p.eval (1/x) = x^2} \ S = putnam_2023_a2_solution n :=
sorry | bb4f345b55faa4df |
putnam_1976_b3 | theorem putnam_1976_b3
(Ξ© : Type*)
[MeasurableSpace Ξ©]
(ΞΌ : Measure Ξ©)
[IsProbabilityMeasure ΞΌ]
(n : β)
(hn : n β₯ 1)
(a : β)
(ha : 0 β€ a β§ a < 1/4)
(u : β β β)
(hu01 : u 0 = 1 β§ u 1 = 1 - a)
(huk : β k β₯ 1, u (k + 1) = u k - a * (u (k-1)))
(hupos : β k : β, u k > 0)
(events : Fin n β Set Ξ©)
(heventsmeas : β i : Fin n, MeasurableSet (events i))
(heventsprob : β i : Fin n, ΞΌ (events i) β₯ ENNReal.ofReal (1 - a))
(heventsindep : β i j : Fin n, |(i : β€) - (j : β€)| > 1 β IndepSet (events i) (events j) ΞΌ)
: ΞΌ (β i : Fin n, events i) β₯ ENNReal.ofReal (u n) :=
sorry | 901e8ee8562e6677 |
putnam_2001_b6 | abbrev putnam_2001_b6_solution : Prop := sorry
-- True
/--
Assume that $(a_n)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_n/n=0$. Must there exist infinitely many positive integers $n$ such that $a_{n-i}+a_{n+i}<2a_n$ for $i=1,2,\ldots,n-1$?
-/
theorem putnam_2001_b6 :
(β a : β€ β β,
(β n β₯ 1, a n > 0 β§ a n < a (n + 1)) β
(Tendsto (fun n : β€ => a (n + 1) / (n + 1)) atTop (π 0)) β
{n : β€ | n > 0 β§ (β i β Set.Icc 1 (n - 1), a (n - i) + a (n + i) < 2 * a n)}.Infinite)
β putnam_2001_b6_solution :=
sorry | e945dee9282c9579 |
putnam_2011_b6 | theorem putnam_2011_b6
(p : β)
(hp : Odd p β§ Nat.Prime p)
: {n β Finset.range p | Β¬ p β£ β k : Finset.range p, Nat.factorial k * n^(k : β)}.card β₯ (p + 1)/2 :=
sorry | 852ee4c45febd2ab |
putnam_1994_b6 | theorem putnam_1994_b6
(n : β β β€)
(hn : β a : β, n a = 101 * a - 100 * 2 ^ a)
: β a b c d : Set.Icc 0 99, (n a + n b β‘ n c + n d [ZMOD 10100]) β (({a, b} : Set (Set.Icc 0 99)) = {c, d}) :=
sorry | a18d57b0b6dd908f |
putnam_1998_a3 | theorem putnam_1998_a3
(f : β β β)
(hf : ContDiff β 3 f)
: β a : β, (f a) * (deriv f a) * (iteratedDeriv 2 f a) * (iteratedDeriv 3 f a) β₯ 0 :=
sorry | 8837306719aecf69 |
putnam_1975_b5 | theorem putnam_1975_b5
(e : β)
(he : e = Real.exp 1)
(f : β β β β β)
(h0 : β x : β, f 0 x = e^x)
(hf : β n : β, β x : β, f (n + 1) x = x * (deriv (f n) x))
: β' n : β, (f n 1)/(Nat.factorial n) = e^e :=
sorry | f7e9aa44f260e5a3 |
putnam_1988_a3 | abbrev putnam_1988_a3_solution : Set β := sorry
-- {x | x > 1 / 2}
/--
Determine, with proof, the set of real numbers $x$ for which
\[
\sum_{n=1}^\infty \left( \frac{1}{n} \csc \frac{1}{n} - 1 \right)^x
\]
converges.
-/
theorem putnam_1988_a3
: {x : β | β L : β, Tendsto (fun t β¦ β n in Finset.Icc (1 : β) t, (((1 / n) / Real.sin (1 / n) - 1) ^ x)) atTop (π L)} = putnam_1988_a3_solution :=
sorry | ccac2106f984da9c |
putnam_1965_b5 | theorem putnam_1965_b5
{K : Type*}
[Fintype K]
(V E : β)
(hV : V = Nat.card K)
(hE: 4*E β€ V^2)
: β G : SimpleGraph K, G.edgeSet.ncard = E β§ β a : K, β w : G.Walk a a, w.length β 3 :=
sorry | cb961268444ee38d |
putnam_1972_b1 | theorem putnam_1972_b1
(S : β β β)
(hS : S = fun (x : β) => β' n : β, x^n * (x - 1)^(2*n) / (Nat.factorial n))
(p : β β β)
(hp : β a : β, a > 0 β§ β x β ball 0 a, β' n : β, (p n)*x^n = S x)
: Β¬β n : β, p n = 0 β§ p (n + 1) = 0 β§ p (n + 2) = 0 :=
sorry | 4c6d7d9a157e7836 |
putnam_1962_b1 | theorem putnam_1962_b1
(p : β β β β β)
(x y : β)
(n : β)
(h0 : p 0 = fun x : β => 1)
(hp : β n > 0, p n = fun x : β => β i in Finset.range n, (x - i))
: p n (x+y) = β k in Finset.range (n+1), Nat.choose n k * (p k x) * (p (n - k) y) :=
sorry | 40225f6550aa61e4 |
putnam_2015_b4 | abbrev putnam_2015_b4_solution : β€ Γ β := sorry
-- (17, 21)
/--
Let $T$ be the set of all triples $(a,b,c)$ of positive integers for which there exist triangles with side lengths $a,b,c$. Express
\[
\sum_{(a,b,c) \in T} \frac{2^a}{3^b 5^c}
\]
as a rational number in lowest terms.
-/
theorem putnam_2015_b4
(quotientof : β β (β€ Γ β))
(hquotientof : β q : β, quotientof q = (q.num, q.den))
: quotientof (β' t : (Fin 3 β β€), if (β n : Fin 3, t n > 0) β§ t 0 < t 1 + t 2 β§ t 1 < t 2 + t 0 β§ t 2 < t 0 + t 1
then 2^(t 0)/(3^(t 1)*5^(t 2)) else 0) = putnam_2015_b4_solution :=
sorry | 88634d6840f0391f |
putnam_2005_b4 | theorem putnam_2005_b4
(m n : β€)
(mnpos : m > 0 β§ n > 0)
(f : β€ β β€ β β)
(hf : β m' > 0, β n' > 0, f m' n' = Set.encard {x : Finset.Icc 1 n' β β€ | β i : Finset.Icc 1 n', |x i| β€ m'})
: f m n = f n m :=
sorry | 1021042986ce3744 |
putnam_1980_b4 | theorem putnam_1980_b4
{T : Type}
(X : Finset T)
(A : Fin 1066 β Finset T)
(hX : X.card β₯ 10)
(hA : β i : Fin 1066, A i β X β§ (A i).card > ((1 : β)/2) * X.card)
: β Y : Finset T, Y β X β§ Y.card = 10 β§ β i : Fin 1066, β y β Y, y β A i :=
sorry | be47ce7c97caf2af |
putnam_1990_b4 | abbrev putnam_1990_b4_solution : Prop := sorry
-- True
/--
Let $G$ be a finite group of order $n$ generated by $a$ and $b$. Prove or disprove: there is a sequence $g_1,g_2,g_3,\dots,g_{2n}$ such that
\begin{itemize}
\item[(1)] every element of $G$ occurs exactly twice, and
\item[(2)] $g_{i+1}$ equals $g_ia$ or $g_ib$ for $i=1,2,\dots,2n$. (Interpret $g_{2n+1}$ as $g_1$.)
\end{itemize}
-/
theorem putnam_1990_b4
: (β (G : Type*) (_ : Fintype G) (_ : Group G) (n : β) (a b : G), (n = Fintype.card G β§ G = Subgroup.closure {a, b} β§ G β Subgroup.closure {a} β§ G β Subgroup.closure {b}) β (β g : β β G, (β x : G, {i : Fin (2 * n) | g i = x}.encard = 2)
β§ (β i : Fin (2 * n), (g ((i + 1) % (2 * n)) = g i * a) β¨ (g ((i + 1) % (2 * n)) = g i * b))) β putnam_1990_b4_solution) :=
sorry | 26615d05cab27e8c |
putnam_1969_b6 | theorem putnam_1969_b6
(A : Matrix (Fin 3) (Fin 2) β)
(B : Matrix (Fin 2) (Fin 3) β)
(p : Fin 3 β Fin 3 β β)
(hp : p 0 0 = 8 β§ p 0 1 = 2 β§ p 0 2 = -2 β§
p 1 0 = 2 β§ p 1 1 = 5 β§ p 1 2 = 4 β§
p 2 0 = -2 β§ p 2 1 = 4 β§ p 2 2 = 5)
(hAB : A * B = Matrix.of p)
: B * A = 9 * (1 : Matrix (Fin 2) (Fin 2) β) :=
sorry | 769163a9bdd3594a |
putnam_1979_b6 | theorem putnam_1979_b6
(n : β)
(z : Fin n β β)
: (|((β i : Fin n, (z i) ^ 2) ^ ((1 : β) / 2)).re| β€ β i : Fin n, |(z i).re|) :=
sorry | 2c4a220770b40e4e |
putnam_2023_b4 | abbrev putnam_2023_b4_solution : β := sorry
-- 29
/--
For a nonnegative integer $n$ and a strictly increasing sequence of real numbers $t_0,t_1,\dots,t_n$, let $f(t)$ be the corresponding real-valued function defined for $t \geq t_0$ by the following properties:
\begin{enumerate}
\item[(a)] $f(t)$ is continuous for $t \geq t_0$, and is twice differentiable for all $t>t_0$ other than $t_1,\dots,t_n$;
\item[(b)] $f(t_0)=1/2$;
\item[(c)] $\lim_{t \to t_k^+} f'(t)=0$ for $0 \leq k \leq n$;
\item[(d)] For $0 \leq k \leq n-1$, we have $f''(t)=k+1$ when $t_k<t<t_{k+1}$, and $f''(t)=n+1$ when $t>t_n$.
\end{enumerate}
Considering all choices of $n$ and $t_0,t_1,\dots,t_n$ such that $t_k \geq t_{k-1}+1$ for $1 \leq k \leq n$, what is the least possible value of $T$ for which $f(t_0+T)=2023$?
-/
theorem putnam_2023_b4
(tne : β β (β β β) β Set β)
(htne : β n ts, tne n ts = {t | t > ts 0 β§ β i : Fin n, t β ts (i.1 + 1)}) :
IsLeast
{(T : β) | 0 β€ T β§ β (n : β) (ts : β β β) (f : β β β),
β k : Fin n, ts (k.1 + 1) β₯ ts k.1 + 1 β§
ContinuousOn f (Set.Ici (ts 0)) β§
ContDiffOn β 1 f (tne n ts) β§
DifferentiableOn β (derivWithin f (tne n ts)) (tne n ts) β§
f (ts 0) = 0.5 β§
(β k : Fin (n + 1),
Tendsto (derivWithin f (tne n ts)) (π[>] (ts k.1)) (π 0)) β§
(β k : Fin n,
β t β Set.Ioo (ts k.1) (ts (k.1 + 1)),
iteratedDerivWithin 2 f (tne n ts) t = k.1 + 1) β§
(β t > ts n,
iteratedDerivWithin 2 f (tne n ts) t = n + 1) β§
f (ts 0 + T) = 2023}
putnam_2023_b4_solution :=
sorry | 6d59fb3caacb6f12 |
putnam_1966_a5 | theorem putnam_1966_a5
(C : Set (β β β))
(hC : C = {f : β β β | Continuous f})
(T : (β β β) β (β β β))
(imageTC : β f β C, T f β C)
(linearT : β a b : β, β f β C, β g β C, T ((fun x => a)*f + (fun x => b)*g) = (fun x => a)*(T f) + (fun x => b)*(T g))
(localT : β r s : β, r β€ s β β f β C, β g β C, (β x β Set.Icc r s, f x = g x) β (β x β Set.Icc r s, T f x = T g x))
: β f β C, β g β C, T g = f * g :=
sorry | b4a70578b1536327 |
putnam_2006_a4 | abbrev putnam_2006_a4_solution : β β β := sorry
-- (fun n : β => (n + 1) / 3)
/--
Let $S=\{1,2,\dots,n\}$ for some integer $n>1$. Say a permutation $\pi$ of $S$ has a \emph{local maximum} at $k \in S$ if
\begin{enumerate}
\item[(i)] $\pi(k)>\pi(k+1)$ for $k=1$;
\item[(ii)] $\pi(k-1)<\pi(k)$ and $\pi(k)>\pi(k+1)$ for $1<k<n$;
\item[(iii)] $\pi(k-1)<\pi(k)$ for $k=n$.
\end{enumerate}
(For example, if $n=5$ and $\pi$ takes values at $1,2,3,4,5$ of $2,1,4,5,3$, then $\pi$ has a local maximum of 2 at $k=1$, and a local maximum of 5 at $k=4$.) What is the average number of local maxima of a permutation of $S$, averaging over all permutations of $S$?
-/
theorem putnam_2006_a4
(n : β)
(pnat : Equiv.Perm (Fin n) β (β β β))
(pcount : Equiv.Perm (Fin n) β β)
(ngt1 : n > 1)
(hpnat : β p : Equiv.Perm (Fin n), β k : Fin n, (pnat p) k = p k)
(hpcount : β p : Equiv.Perm (Fin n), pcount p = {k : Fin n | (k.1 = 0 β¨ (pnat p) (k - 1) < (pnat p) k) β§ (k = n - 1 β¨ (pnat p) k > (pnat p) (k + 1))}.encard)
: (β p : Equiv.Perm (Fin n), pcount p) / {p : Equiv.Perm (Fin n) | true}.ncard = putnam_2006_a4_solution n :=
sorry | 5bed94a8a41f3bae |
putnam_1971_a1 | theorem putnam_1971_a1
(S : Set (β€ Γ β€ Γ β€))
(hS : S.ncard = 9)
(L : (β€ Γ β€ Γ β€) Γ (β€ Γ β€ Γ β€) β Set (β Γ β Γ β))
(hL : L = fun ((a, b, c), (d, e, f)) =>
{(t*a + (1-t)*d, t*b + (1-t)*e, t*c + (1-t)*f) | t β Ioo (0 : β) 1})
: β x y z : β€, β P Q : β€ Γ β€ Γ β€, P β S β§ Q β S β§ P β Q β§ ((x : β), (y : β), (z : β)) β L (P, Q) :=
sorry | 8f5508b1bda31777 |
putnam_1983_a4 | theorem putnam_1983_a4
(k m : β)
(S : β€)
(kpos : k > 0)
(hm : m = 6 * k - 1)
(hS : S = β j in Finset.Icc 1 (2 * k - 1), (-1 : β€) ^ (j + 1) * choose m (3 * j - 1))
: (S β 0) :=
sorry | 6bce091430595375 |
putnam_1993_a4 | theorem putnam_1993_a4
(x : Fin 19 β β€)
(y : Fin 93 β β€)
(hx : β i, 0 < x i β§ x i β€ 93)
(hy : β j, 0 < y j β§ y j β€ 19) :
β (is : Finset (Fin 19)) (js : Finset (Fin 93)),
is β β
β§ (β i : is, x i) = (β j : js, y j) :=
sorry | 4b5d9e092dc305b7 |
putnam_1990_a2 | abbrev putnam_1990_a2_solution : Prop := sorry
-- True
/--
Is $\sqrt{2}$ the limit of a sequence of numbers of the form $\sqrt[3]{n}-\sqrt[3]{m}$ ($n,m=0,1,2,\dots$)?
-/
theorem putnam_1990_a2
(numform : β β Prop)
(hnumform : β x : β, numform x β β n m : β, x = n ^ ((1 : β) / 3) - m ^ ((1 : β) / 3)) :
putnam_1990_a2_solution β
(β s : β β β,
(β i : β, numform (s i)) β§
Tendsto s atTop (π (Real.sqrt 2))) :=
sorry | 3cd568a3b90e2d85 |
putnam_1980_a2 | abbrev putnam_1980_a2_solution : β β β β β := sorry
-- (fun r s : β => (1 + 4 * r + 6 * r ^ 2) * (1 + 4 * s + 6 * s ^ 2))
/--
Let $r$ and $s$ be positive integers. Derive a formula for the number of ordered quadruples $(a,b,c,d)$ of positive integers such that $3^r \cdot 7^s=\text{lcm}[a,b,c]=\text{lcm}[a,b,d]=\text{lcm}[a,c,d]=\text{lcm}[b,c,d]$. The answer should be a function of $r$ and $s$. (Note that $\text{lcm}[x,y,z]$ denotes the least common multiple of $x,y,z$.)
-/
theorem putnam_1980_a2
(r s : β)
(abcdlcm : β β β β β β β β Prop)
(rspos : r > 0 β§ s > 0)
(habcdlcm : β a b c d : β, abcdlcm a b c d β
(a > 0 β§ b > 0 β§ c > 0 β§ d > 0 β§
(3 ^ r * 7 ^ s = Nat.lcm (Nat.lcm a b) c) β§
(3 ^ r * 7 ^ s = Nat.lcm (Nat.lcm a b) d) β§
(3 ^ r * 7 ^ s = Nat.lcm (Nat.lcm a c) d) β§
(3 ^ r * 7 ^ s = Nat.lcm (Nat.lcm b c) d))) :
{(a, b, c, d) : β Γ β Γ β Γ β | abcdlcm a b c d}.encard = putnam_1980_a2_solution r s :=
sorry | a8aa7f9708e74b89 |
putnam_2005_a2 | abbrev putnam_2005_a2_solution : β β β := sorry
-- fun n β¦ if n = 1 then 0 else 2 ^ (n - 2)
/--
Let $\mathbf{S} = \{(a,b) | a = 1, 2, \dots,n, b = 1,2,3\}$.
A \emph{rook tour} of $\mathbf{S}$ is a polygonal path made up of line segments connecting points $p_1, p_2, \dots, p_{3n}$ in sequence such that
\begin{enumerate}
\item[(i)] $p_i \in \mathbf{S}$,
\item[(ii)] $p_i$ and $p_{i+1}$ are a unit distance apart, for
$1 \leq i <3n$,
\item[(iii)] for each $p \in \mathbf{S}$ there is a unique $i$ such that
$p_i = p$.
\end{enumerate}
How many rook tours are there that begin at $(1,1)$
and end at $(n,1)$?
-/
theorem putnam_2005_a2
(n : β)
(npos : n > 0)
(S : Set (β€ Γ β€))
(unit : β€ Γ β€ β β€ Γ β€ β Prop)
(rooktour : (β β β€ Γ β€) β Prop)
(hS : S = prod (Icc 1 (n : β€)) (Icc 1 3))
(hunit : unit = fun (a, b) (c, d) β¦ a = c β§ |d - b| = 1 β¨ b = d β§ |c - a| = 1)
(hrooktour : rooktour = fun p β¦ (β P β S, β! i, i β Icc 1 (3 * n) β§ p i = P) β§ (β i β Icc 1 (3 * n - 1), unit (p i) (p (i + 1))) β§ p 0 = 0 β§ β i > 3 * n, p i = 0)
: ({p : β β β€ Γ β€ | rooktour p β§ p 1 = (1, 1) β§ p (3 * n) = ((n : β€), 1)}.encard = putnam_2005_a2_solution n) :=
sorry | c9b1a3bc5c7f56e9 |
putnam_2015_a2 | abbrev putnam_2015_a2_solution : β := sorry
-- 181
/--
Let $a_0=1$, $a_1=2$, and $a_n=4a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of $a_{2015}$.
-/
theorem putnam_2015_a2
(a : β β β€)
(abase : a 0 = 1 β§ a 1 = 2)
(arec : β n β₯ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd putnam_2015_a2_solution β§ putnam_2015_a2_solution.Prime β§ ((putnam_2015_a2_solution : β€) β£ a 2015) :=
sorry | e2d6f85883c968ff |
putnam_2002_a6 | abbrev putnam_2002_a6_solution : Set β := sorry
-- {2}
/--
Fix an integer $b \geq 2$. Let $f(1) = 1$, $f(2) = 2$, and for each
$n \geq 3$, define $f(n) = n f(d)$, where $d$ is the number of
base-$b$ digits of $n$. For which values of $b$ does
\[
\sum_{n=1}^\infty \frac{1}{f(n)}
\]
converge?
-/
theorem putnam_2002_a6
(f : β β β β β)
(hf : β b : β, f b 1 = 1 β§ f b 2 = 2 β§ β n β Ici 3, f b n = n * f b (Nat.digits b n).length)
: {b β Ici 2 | β L : β, Tendsto (fun m : β => β n in Finset.Icc 1 m, 1/(f b n)) atTop (π L)} = putnam_2002_a6_solution :=
sorry | 2d2c7c9979100513 |
putnam_2012_a6 | abbrev putnam_2012_a6_solution : Prop := sorry
-- True
/--
Let $f(x,y)$ be a continuous, real-valued function on $\mathbb{R}^2$. Suppose that, for every rectangular region $R$ of area $1$, the double integral of $f(x,y)$ over $R$ equals $0$.
Must $f(x,y)$ be identically $0$?
-/
theorem putnam_2012_a6
(p : ((β Γ β) β β) β Prop)
(hp : β f, p f β
Continuous f β§
β x1 x2 y1 y2 : β, x2 > x1 β y2 > y1
β (x2 - x1) * (y2 - y1) = 1 β β« x in x1..x2, β« y in y1..y2, f (x, y) = 0)
: ((β f x y, p f β f (x, y) = 0) β putnam_2012_a6_solution) :=
sorry | 6418242601ed3287 |
putnam_1965_a3 | theorem putnam_1965_a3
(a : β β β)
(Ξ± : β)
: Tendsto (fun n : β => (β k in Finset.Icc 1 n, exp (I * a k))/n) atTop (π Ξ±) β
Tendsto (fun n : β => (β k in Finset.Icc 1 (n^2), exp (I * a k))/n^2) atTop (π Ξ±) :=
sorry | 87da1c9079b6b5a5 |
putnam_1988_b5 | abbrev putnam_1988_b5_solution : β β β := sorry
-- (fun n : β => 2 * n)
/--
For positive integers $n$, let $M_n$ be the $2n+1$ by $2n+1$ skew-symmetric matrix for which each entry in the first $n$ subdiagonals below the main diagonal is $1$ and each of the remaining entries below the main diagonal is $-1$. Find, with proof, the rank of $M_n$. (According to one definition, the rank of a matrix is the largest $k$ such that there is a $k \times k$ submatrix with nonzero determinant.) One may note that
\begin{align*}
M_1&=\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix} \\
M_2&=\begin{pmatrix} 0 & -1 & -1 & 1 & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 1 & 1 & 0 & -1 & -1 \\ -1 & 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 1 & 0 \end{pmatrix}.
\end{align*}
-/
theorem putnam_1988_b5
(n : β) (hn : n > 0)
(Mn : Matrix (Fin (2 * n + 1)) (Fin (2 * n + 1)) β)
(Mnskewsymm : β i j, Mn i j = -(Mn j i))
(hMn1 : β i j, (1 β€ (i.1 : β€) - j.1 β§ (i.1 : β€) - j.1 β€ n) β Mn i j = 1)
(hMnn1 : β i j, (i.1 : β€) - j.1 > n β Mn i j = -1) :
Mn.rank = putnam_1988_b5_solution n :=
sorry | 6218325be7aa952c |
putnam_1975_a3 | abbrev putnam_1975_a3_solution : ((β Γ β Γ β) β (β Γ β Γ β)) Γ ((β Γ β Γ β) β (β Γ β Γ β)) := sorry
-- (fun (a, b, c) => ((a/b)^(1/(b - a)), (1 - ((a/b)^(1/(b - a)))^b)^(1/b), 0), fun (a, b, c) => (0, (1 - ((b/c)^(1/(c - b)))^b)^(1/b), (b/c)^(1/(c - b))))
/--
If $a$, $b$, and $c$ are real numbers satisfying $0 < a < b < c$, at what points in the set $$\{(x, y, z) \in \mathbb{R}^3 : x^b + y^b + z^b = 1, x \ge 0, y \ge 0, z \ge 0\}$$ does $f(x, y, z) = x^a + y^b + z^c$ attain its maximum and minimum?
-/
theorem putnam_1975_a3
(a b c : β)
(hi : 0 < a β§ a < b β§ b < c)
(P : (β Γ β Γ β) β Prop)
(f : (β Γ β Γ β) β β)
(hP : P = fun (x, y, z) => x β₯ 0 β§ y β₯ 0 β§ z β₯ 0 β§ x^b + y^b + z^b = 1)
(hf : f = fun (x, y, z) => x^a + y^b + z^c)
: (P (putnam_1975_a3_solution.1 (a, b, c)) β§ β x y z : β, P (x, y, z) β
f (x, y, z) β€ f (putnam_1975_a3_solution.1 (a, b, c))) β§
(P (putnam_1975_a3_solution.2 (a, b, c)) β§ β x y z : β, P (x, y, z) β
f (x, y, z) β₯ f (putnam_1975_a3_solution.2 (a, b, c))) :=
sorry | 7708c2145ea6ead7 |
putnam_1998_b5 | abbrev putnam_1998_b5_solution : β := sorry
-- 1
/--
Let $N$ be the positive integer with 1998 decimal digits, all of them 1; that is, \[N=1111\cdots 11.\] Find the thousandth digit after the decimal point of $\sqrt N$.
-/
theorem putnam_1998_b5
(N : β)
(hN : N = β i in Finset.range 1998, 10^i)
: putnam_1998_b5_solution = (Nat.floor (10^1000 * Real.sqrt N)) % 10 :=
sorry | 3661d437297acba5 |
putnam_1997_a6 | abbrev putnam_1997_a6_solution : β€ β β€ β β := sorry
-- fun n k => Nat.choose (n.toNat-1) (k.toNat-1)
/--
For a positive integer $n$ and any real number $c$, define $x_k$ recursively by $x_0=0$, $x_1=1$, and for $k\geq 0$, \[x_{k+2}=\frac{cx_{k+1}-(n-k)x_k}{k+1}.\] Fix $n$ and then take $c$ to be the largest value for which $x_{n+1}=0$. Find $x_k$ in terms of $n$ and $k$, $1\leq k\leq n$.
-/
theorem putnam_1997_a6
(n : β€)
(hn : n > 0)
(x : β β (β€ β β))
(hx0 : β c, x c 0 = 0)
(hx1 : β c, x c 1 = 1)
(hxk : β c, β k β₯ 0, x c (k + 2) = (c*(x c (k + 1)) - (n - k)*(x c k))/(k + 1))
(S : Set β)
(hS : S = {c : β | x c (n + 1) = 0}) :
β k : Set.Icc 1 n, x (sSup S) k = putnam_1997_a6_solution n k :=
sorry | 930ccd3ee7a77a60 |
putnam_1987_a6 | abbrev putnam_1987_a6_solution : Set β := sorry
-- {x : β | x > 0 β§ x < 25}
/--
For each positive integer $n$, let $a(n)$ be the number of zeroes in the base $3$ representation of $n$. For which positive real numbers $x$ does the series
\[
\sum_{n=1}^\infty \frac{x^{a(n)}}{n^3}
\]
converge?
-/
theorem putnam_1987_a6
(a : β β β)
(ha : a = fun n β¦ {i | (digits 3 n).get i = 0}.ncard)
: ({x : β | x > 0 β§ Summable (fun n β¦ x ^ (a n) / (n ^ 3))} = putnam_1987_a6_solution) :=
sorry | 0275128162da2e40 |
putnam_1973_a6 | theorem putnam_1973_a6
(nint : β β (Fin 7 β (β Γ β)) β β)
(h_nint : nint = fun n lines => {p : β Γ β | β! S : Set (Fin 7), S.ncard = n β§ p β β i β S, {pts | pts.2 = (lines i).1 * pts.1 + (lines i).2}}.ncard)
: Β¬ β lines : Fin 7 β (β Γ β), (β i j : Fin 7, i β j β lines i β lines j) β§ nint 3 lines β₯ 6 β§ nint 2 lines β₯ 4 :=
sorry | 6bf1770e42810cac |
putnam_1963_a6 | theorem putnam_1963_a6
(F1 F2 U V A B C D P Q : EuclideanSpace β (Fin 2))
(r : β)
(E : Set (EuclideanSpace β (Fin 2)))
(hE : E = {H : EuclideanSpace β (Fin 2) | dist F1 H + dist F2 H = r})
(M : EuclideanSpace β (Fin 2))
(hM : M = midpoint β U V)
(hr : r > dist F1 F2)
(hUV : U β E β§ V β E β§ U β V)
(hAB : A β E β§ B β E β§ A β B)
(hCD : C β E β§ D β E β§ C β D)
(hdistinct : segment β A B β segment β U V β§ segment β C D β segment β U V β§ segment β A B β segment β C D)
(hM : M β segment β A B β§ M β segment β C D)
(hP : Collinear β {P, A, C} β§ Collinear β {P, U, V})
(hQ : Collinear β {P, B, D} β§ Collinear β {Q, U, V})
: M = midpoint β P Q :=
sorry | 8635a29b1ddaa07f |
putnam_2014_a3 | abbrev putnam_2014_a3_solution : β := sorry
-- 3 / 7
/--
Let \( a_0 = \frac{5}{2} \) and \( a_k = a_{k-1}^2 - 2 \) for \( k \geq 1 \). Compute \( \prod_{k=0}^{\infty} \left(1 - \frac{1}{a_k}\right) \) in closed form.
-/
theorem putnam_2014_a3
(a : β β β)
(a0 : a 0 = 5 / 2)
(ak : β k β₯ 1, a k = (a (k - 1)) ^ 2 - 2)
: Tendsto (fun n : β => β k in Finset.range n, (1 - 1 / a k)) atTop (π putnam_2014_a3_solution) :=
sorry | 009543963e8ef926 |
putnam_2004_a3 | theorem putnam_2004_a3
(u : β β β)
(hubase : u 0 = 1 β§ u 1 = 1 β§ u 2 = 1)
(hudet : β n : β, Matrix.det (fun i j : Fin 2 => u (n + i * 2 + j)) = (n)!)
: β n : β, β m : β€, u n = m :=
sorry | 20e1eaa1d44c8edd |
putnam_1981_a3 | abbrev putnam_1981_a3_solution : Prop := sorry
-- False
/--
Does the limit $$lim_{t \rightarrow \infty}e^{-t}\int_{0}^{t}\int_{0}^{t}\frac{e^x - e^y}{x - y} dx dy$$exist?
-/
theorem putnam_1981_a3
(f : β β β)
(hf : f = fun t : β => Real.exp (-t) * β« y in (Ico 0 t), β« x in (Ico 0 t), (Real.exp x - Real.exp y) / (x - y))
: (β L : β, Tendsto f atTop (π L)) β putnam_1981_a3_solution :=
sorry | f983fb5efc86696e |
putnam_1991_a3 | abbrev putnam_1991_a3_solution : Set (Polynomial β) := sorry
-- {p : Polynomial β | p.degree = 2 β§ (β r1 r2 : β, r1 β r2 β§ p.eval r1 = 0 β§ p.eval r2 = 0)}
/--
Find all real polynomials $p(x)$ of degree $n \geq 2$ for which there exist real numbers $r_1<r_2<\cdots<r_n$ such that
\begin{enumerate}
\item $p(r_i)=0, \qquad i=1,2,\dots,n$, and
\item $p'(\frac{r_i+r_{i+1}}{2})=0 \qquad i=1,2,\dots,n-1$,
\end{enumerate}
where $p'(x)$ denotes the derivative of $p(x)$.
-/
theorem putnam_1991_a3
(p : Polynomial β)
(n : β)
(hn : n = p.degree)
(hge : n β₯ 2) :
p β putnam_1991_a3_solution β
(β r : β β β, (β i : Fin (n - 1), r i < r (i + 1)) β§
(β i : Fin n, p.eval (r i) = 0) β§
(β i : Fin (n - 1), (Polynomial.derivative p).eval ((r i + r (i + 1)) / 2) = 0)) :=
sorry | cceadb273ef31524 |
putnam_1999_b4 | theorem putnam_1999_b4
(f : β β β)
(hf : ContDiff β 3 f)
(hpos: β n β€ 3, β x : β, iteratedDeriv n f x > 0)
(hle : β x : β, iteratedDeriv 3 f x β€ f x)
: β x : β, deriv f x < 2 * (f x) :=
sorry | 2f5930e0878b38a5 |
putnam_2021_b3 | abbrev putnam_2021_b3_solution : Prop := sorry
-- True
/--
Let $h(x,y)$ be a real-valued function that is twice continuously differentiable throughout $\mathbb{R}^2$, and define $\rho(x,y)=yh_x-xh_y$. Prove or disprove: For any positive constants $d$ and $r$ with $d>r$, there is a circle $\mathcal{S}$ of radius $r$ whose center is a distance $d$ away from the origin such that the integral of $\rho$ over the interior of $\mathcal{S}$ is zero.
-/
theorem putnam_2021_b3
(rho : ((EuclideanSpace β (Fin 2)) β β) β (EuclideanSpace β (Fin 2)) β β)
(rho_def : β (h : (EuclideanSpace β (Fin 2)) β β) (p : EuclideanSpace β (Fin 2)),
rho h p = (p 1) *
deriv (fun x' : β => h ((WithLp.equiv 2 (EuclideanSpace β (Fin 2))).symm ![x', p 1])) (p 0)
- (p 0) * deriv (fun y' : β => h ((WithLp.equiv 2 (EuclideanSpace β (Fin 2))).symm ![p 0, y'])) (p 1)) :
(β h : (EuclideanSpace β (Fin 2)) β β, ContDiff β 2 h β
(β d > 0, β r > 0, d > r β (β c : EuclideanSpace β (Fin 2), dist c 0 = d β§ (β« p in (ball c r), rho h p) = 0)))
β putnam_2021_b3_solution :=
sorry | 35dfc0c1e9f9e266 |
putnam_1989_b4 | abbrev putnam_1989_b4_solution : Prop := sorry
-- True
/--
Can a countably infinite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is finite?
-/
theorem putnam_1989_b4 :
(β S : Type,
Countable S β§ Infinite S β§
β C : Set (Set S),
Β¬Countable C β§
(β R β C, R β β
) β§
(β A β C, β B β C, A β B β (A β© B).Finite)
) β putnam_1989_b4_solution :=
sorry | bdfc3a7e7128ae1b |
putnam_1964_a2 | abbrev putnam_1964_a2_solution : β β Set (β β β) := sorry
-- fun _ β¦ β
/--
Let $\alpha$ be a real number. Find all continuous real-valued functions $f : [0, 1] \to (0, \infty)$ such that
\begin{align*}
\int_0^1 f(x) dx &= 1, \\
\int_0^1 x f(x) dx &= \alpha, \\
\int_0^1 x^2 f(x) dx &= \alpha^2. \\
\end{align*}
-/
theorem putnam_1964_a2
(Ξ± : β)
: (putnam_1964_a2_solution Ξ± = {f : β β β | (β x β Icc 0 1, f x > 0) β§ ContinuousOn f (Icc 0 1) β§ β« x in (0)..1, f x = 1 β§ β« x in (0)..1, x * f x = Ξ± β§ β« x in (0)..1, x^2 * f x = Ξ±^2}) :=
sorry | 1782b351ede12012 |
putnam_1967_a4 | theorem putnam_1967_a4
(lambda : β)
(hlambda : lambda > 1 / 2)
: Β¬β u : β β β, β x β Set.Icc 0 1, u x = 1 + lambda * (β« y in Set.Ioo x 1, u y * u (y - x)) :=
sorry | f74a6cec8b635362 |
putnam_2022_b5 | abbrev putnam_2022_b5_solution : Set β := sorry
-- Set.Icc 0 (1 / 4)
/--
For $0 \leq p \leq 1/2$, let $X_1,X_2,\dots$ be independent random variables such that
$X_i=\begin{cases}
1 & \text{with probability $p$,} \\
-1 & \text{with probability $p$,} \\
0 & \text{with probability $1-2p$,}
\end{cases}$
for all $i \geq 1$. Given a positive integer $n$ and integers $b,a_1,\dots,a_n$, let $P(b,a_1,\dots,a_n)$ denote the probability that $a_1X_1+\dots+a_nX_n=b$. For which values of $p$ is it the case that $P(0,a_1,\dots,a_n) \geq P(b,a_1,\dots,a_n)$ for all positive integers $n$ and all integers $b,a_1,\dots,a_n$?
-/
theorem putnam_2022_b5
(p : β)
(Xset : (n : β) β Set (Fin n β β€))
(Xprob : (n : β) β (Fin n β β€) β β)
(P : (n : β) β β€ β (Fin n β β€) β β)
(hXset : β n > 0, Xset n = {X : Fin n β β€ | β i : Fin n, X i = 1 β¨ X i = -1 β¨ X i = 0})
(hXprob : β n > 0, β X : Fin n β β€, Xprob n X = β i : Fin n, if (X i = 1 β¨ X i = -1) then p else (1 - 2 * p))
(hP : β n > 0, β (b : β€) (a : Fin n β β€), P n b a = β' X : {X' β Xset n | (β i : Fin n, a i * X' i) = b}, Xprob n X)
: (0 β€ p β§ p β€ 1 / 2 β§ (β n > 0, β (b : β€) (a : Fin n β β€), P n 0 a β₯ P n b a)) β p β putnam_2022_b5_solution :=
sorry | a77f09c1bd3b14d7 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.